
Swiss Ephemeris 1

Programming interface to the Swiss Ephemeris

Copyright Astrodienst AG 1997-2003.
This document describes the proprietary programmer's interface to the Swiss Ephemeris DLL.
Swiss Ephemeris is available under two different licenses:

 Swiss Ephemeris Free Edition under the Swiss Ephemeris Public License, for use in non-commercial, Open

Source projects
 Swiss Ephemeris Professional Edition under a license with a fee, for use in commercial or non-Open-Source

projects

Table of contents

1. The programming steps to get a planet’s position... 4
2. The functions swe_calc_ut() and swe_calc() .. 6

2.1. The call parameters ..6
2.2. Error handling and return values...6
2.3. Bodies (int ipl) ...7
2.4. Options chosen by flag bits (long iflag) ... 11
2.5. Position and Speed (double xx[6]) .. 13

3. The function swe_get_planet_name() .. 13
4. Fixed stars functions ... 14

4.1 swe_fixstar_ut .. 14
4.2 swe_fixstar() .. 14

5. Apsides functions .. 15
5.1 swe_nod_aps_ut ... 15
5.2 swe_nod_aps() ... 15

6. Eclipse and planetary phenomena functions ... 16
6.1. swe_sol_eclipse_when_loc() and swe_lun_occult_when_loc() ... 16
6.2. swe_sol_eclipse_when_glob()... 17
6.3. swe_sol_eclipse_how ()... 17
6.4. swe_sol_eclipse_where () .. 18
6.5. swe_lun_occult_when_loc() ... 19
6.6. swe_lun_occult_when_glob() ... 20
6.7. swe_lun_occult_where () ... 20
6.8. swe_lun_eclipse_when ()... 21
6.9. swe_lun_eclipse_how () .. 22
6.10. swe_rise_trans(), risings, settings, meridian transits.. 22
6.11. swe_pheno_ut() and swe_pheno(), planetary phenomena .. 23
6.12. swe_azalt(), horizontal coordinates, azimuth, altitude .. 23
6.13. swe_azalt_rev().. 24
6.14. swe_refrac(), refraction ... 24

7. The date conversion functions swe_julday(), swe_date_conversion(), swe_revjul()
.. 25
8. Time functions... 25

8.1 swe_deltat() ... 26
8.2 swe_set_tid_acc(), swe_get_tid_acc() .. 26

9. The function swe_set_topo() for topocentric planet positions 26
10. Sidereal mode functions.. 26

10.1. swe_set_sid_mode() ... 26
10.2. swe_get_ayanamsa_ut() and swe_get_ayanamsa() ... 27

11. The Ephemeris file related functions ... 29
11.1 swe_set_ephe_path()... 29
11.2 swe_close() .. 29
11.3 swe_set_jpl_file() .. 29

12. House cusp calculation .. 30

Swiss Ephemeris 2
12.1 swe_houses().. 30
12.2 swe_houses_armc() ... 30
12.3 swe_houses_ex()... 30

13. The sign of geographical longitudes in Swisseph functions................................. 32
14. Getting the house position of a planet with swe_house_pos()............................ 32
14.1. Calculating the Gauquelin sector position of a planet with swe_house_pos() or
swe_gauquelin_sector() ... 33
15. Sidereal time with swe_sidtime() and swe_sidtime0() 33
16. Summary of SWISSEPH functions.. 34

16.1. Calculation of planets and stars .. 34
16.2 Eclipses and planetary phenomena ... 35
16.3. Date and time conversion .. 37
16.4. Initialization, setup, and closing functions .. 38
16.5. House calculation.. 39
16.6. Auxiliary functions .. 41
16.7. Other functions that may be useful.. 41

17. The SWISSEPH DLLs.. 42
17.1 DLL Interface for brain damaged compilers.. 42

18. Using the DLL with Visual Basic 5.0.. 43
19. Using the DLL with Borland Delphi and C++ Builder... 43

19.1 Delphi 2.0 and higher (32-bit) ... 43
19.2 Borland C++ Builder .. 44

20. The C sample program... 44
21. The source code distribution ... 45
22. The PLACALC compatibility API ... 46
23. Documentation files .. 46
24. Swisseph with different hardware and compilers.. 46
25. Debugging and Tracing Swisseph.. 46

25.1. If you are using the DLL .. 46
25.2 If you are using the source code .. 47

Appendix ... 48
Update and release history ... 48
Changes from version 1.65 to version 1.66... 49
Changes from version 1.64.01 to version 1.65.00 .. 49
Changes from version 1.64 to version 1.64.01 .. 49
Changes from version 1.63 to version 1.64... 49
Changes from version 1.62 to version 1.63... 49
Changes from version 1.61.03 to version 1.62 .. 50
Changes from version 1.61 to 1.61.01 ... 50
Changes from version 1.60 to 1.61.. 50
Changes from version 1.51 to 1.60.. 50
Changes from version 1.50 to 1.51.. 50
Changes from version 1.40 to 1.50.. 51
Changes from version 1.31 to 1.40.. 51
Changes from version 1.30 to 1.31.. 51
Changes from version 1.27 to 1.30.. 51
Changes from version 1.26 to 1.27.. 51
Changes from version 1.25 to 1.26.. 51
Changes from version 1.22 to 1.23.. 52
Changes from version 1.21 to 1.22.. 52
Changes from version 1.20 to 1.21.. 52
Changes from version 1.11 to 1.20.. 52
Changes from version 1.10 to 1.11.. 52
Changes from version 1.04 to 1.10.. 52
Changes from Version 1.03 to 1.04.. 52
Changes from Version 1.02 to 1.03.. 52
Changes from Version 1.01 to 1.02.. 53

Swiss Ephemeris 3
Changes from Version 1.00 to 1.01... 53

Appendix A .. 53
What is missing ?.. 53

Index... 55

Swiss Ephemeris 4

1. The programming steps to get a planet’s position

To compute a celestial body or point with SWISSEPH, you have to do the following steps (use swetest.c as an
example). The details of the functions will be explained in the following chapters.

1. Set the directory path of the ephemeris files, e.g.:

 swe_set_ephe_path(”C:\\SWEPH\\EPHE”);

2. From the birth date, compute the Julian day number:

 jul_day_UT = swe_julday(year, month, day, hour, gregflag);

3 . Compute a planet or other bodies:

 ret_flag = swe_calc_ut(jul_day_UT, planet_no, flag, lon_lat_rad, err_msg);
 or a fixed star:

 ret_flag = swe_fixstar_ut(star_nam, jul_day_UT, flag, lon_lat_rad, err_msg);

 Note:
 The functions swe_calc_ut() and swe_fixstar_ut() were introduced with Swisseph version 1.60.
 If you use a Swisseph version older than 1.60 or if you want to work with Ephemeris Time, you have to proceed as follows instead:

 First, if necessary, convert Universal Time (UT) to Ephemeris Time (ET):

 jul_day_ET = jul_day_UT + swe_deltat(jul_day_UT);

 Then Compute a planet or other bodies:

 ret_flag = swe_calc(jul_day_ET, planet_no, flag, lon_lat_rad, err_msg);
 or a fixed star:

 ret_flag = swe_fixstar(star_nam, jul_day_ET, flag, lon_lat_rad, err_msg);

5. At the end of your computations close all files and free memory calling swe_close();

Here is a miniature sample program, it is in the source distribution as swemini.c

#include "swephexp.h" /* this includes "sweodef.h" */
int main()
{
 char *sp, sdate[AS_MAXCH], snam[40], serr[AS_MAXCH];
 int jday = 1, jmon = 1, jyear = 2000;
 double jut = 0.0;
 double tjd_ut, te, x2[6];
 long iflag, iflgret;
 int p;
 iflag = SEFLG_SPEED;
 while (TRUE) {
 printf("\nDate (d.m.y) ?");
 gets(sdate);
 /* stop if a period . is entered */
 if (*sdate == '.')
 return OK;
 if (sscanf (sdate, "%d%*c%d%*c%d", &jday,&jmon,&jyear) < 1) exit(1);
 /*
 * we have day, month and year and convert to Julian day number
 */
 tjd_ut = swe_julday(jyear,jmon,jday,jut,SE_GREG_CAL);
 /*
 * compute Ephemeris time from Universal time by adding delta_t
 * not required for Swisseph versions smaller than 1.60
 */
 /* te = tjd_ut + swe_deltat(tjd_ut); */
 printf("date: %02d.%02d.%d at 0:00 Universal time\n", jday, jmon, jyear);
 printf("planet \tlongitude\tlatitude\tdistance\tspeed long.\n");
 /*
 * a loop over all planets
 */
 for (p = SE_SUN; p <= SE_CHIRON; p++) {
 if (p == SE_EARTH) continue;
 /*

Swiss Ephemeris 5
 * do the coordinate calculation for this planet p
 */
iflgret = swe_calc_ut(tjd_ut, p, iflag, x2, serr);
 /* Swisseph versions older than 1.60 require the following
 * statement instead */
/* iflgret = swe_calc(te, p, iflag, x2, serr); */
 /*
 * if there is a problem, a negative value is returned and an
 * error message is in serr.
 */
 if (iflgret < 0)
 printf("error: %s\n", serr);
 /*
 * get the name of the planet p
 */
 swe_get_planet_name(p, snam);
 /*
 * print the coordinates
 */
 printf("%10s\t%11.7f\t%10.7f\t%10.7f\t%10.7f\n",
 snam, x2[0], x2[1], x2[2], x2[3]);
 }
 }
 return OK;
}

Swiss Ephemeris 6

2. The functions swe_calc_ut() and swe_calc()

2.1. The call parameters
swe_calc_ut() was introduced with Swisseph version 1.60 and makes planetary calculations a bit simpler. For
the steps required, see the chapter The programming steps to get a planet’s position.
swe_calc_ut() and swe_calc() work exactly the same way except that swe_calc() requires Ephemeris Time
(more accurate: Dynamical Time) as a parameter whereas swe_calc_ut() expects Universal Time. For
common astrological calculations, you will only need swe_calc_ut() and will not have to think anymore about
the conversion between Universal Time and Ephemeris Time.
swe_calc_ut() and swe_calc() compute positions of planets, asteroids, lunar nodes and apogees. They are
defined as follows:

int swe_calc_ut (double tjd_ut, int ipl, int iflag, double* xx, char* serr),

where
tjd_ut =Julian day, Universal Time
ipl =body number
iflag =a 32 bit integer containing bit flags that indicate what kind of computation is wanted
xx =array of 6 doubles for longitude, latitude, distance, speed in long., speed in lat., and speed in dist.
serr[256] =character string to return error messages in case of error.

and

int swe_calc(double tjd_et, int ipl, int iflag, double *xx, char *serr),
same but

tjd_et = Julian day, Ephemeris time, where tjd_et = tjd_ut + swe_deltat(tjd_ut)

A detailed description of these variables will be given in the following sections.

2.2. Error handling and return values
On success, swe_calc (or swe_calc_ut) returns a 32-bit integer containing flag bits that indicate what kind of
computation has been done. This value may or may not be equal to iflag. If an option specified by iflag cannot
be fulfilled or makes no sense, swe_calc just does what can be done. E.g., if you specify that you want JPL
ephemeris, but swe_calc cannot find the ephemeris file, it tries to do the computation with any available
ephemeris. This will be indicated in the return value of swe_calc. So, to make sure that swe_calc () did exactly
what you had wanted, you may want to check whether or not the return code == iflag.
However, swe_calc() might return an fatal error code (< 0) and an error string in one of the following cases:

• if an illegal body number has been specified
• if a Julian day beyond the ephemeris limits has been specified
• if the length of the ephemeris file is not correct (damaged file)
• on read error, e.g. a file index points to a position beyond file length (data on file are corrupt)
• if the copyright section in the ephemeris file has been destroyed.

If any of these errors occurs,

• the return code of the function is -1,
• the position and speed variables are set to zero,
• the type of error is indicated in the error string serr.

Swiss Ephemeris 7

2.3. Bodies (int ipl)

To tell swe_calc() which celestial body or factor should be computed, a fixed set of body numbers is used. The
body numbers are defined in swephexp.h:

/* planet numbers for the ipl parameter in swe_calc() */

#define SE_ECL_NUT -1
#define SE_SUN 0
#define SE_MOON 1
#define SE_MERCURY 2
#define SE_VENUS 3
#define SE_MARS 4
#define SE_JUPITER 5
#define SE_SATURN 6
#define SE_URANUS 7
#define SE_NEPTUNE 8
#define SE_PLUTO 9
#define SE_MEAN_NODE 10
#define SE_TRUE_NODE 11
#define SE_MEAN_APOG 12
#define SE_OSCU_APOG 13
#define SE_EARTH 14
#define SE_CHIRON 15
#define SE_PHOLUS 16
#define SE_CERES 17
#define SE_PALLAS 18
#define SE_JUNO 19
#define SE_VESTA 20

#define SE_FICT_OFFSET 40
#define SE_NFICT_ELEM 15

/* Hamburger or Uranian "planets" */

#define SE_CUPIDO 40
#define SE_HADES 41
#define SE_ZEUS 42
#define SE_KRONOS 43
#define SE_APOLLON 44
#define SE_ADMETOS 45
#define SE_VULKANUS 46
#define SE_POSEIDON 47

/* other fictitious bodies */

#define SE_ISIS 48
#define SE_NIBIRU 49
#define SE_HARRINGTON 50
#define SE_NEPTUNE_LEVERRIER 51
#define SE_NEPTUNE_ADAMS 52
#define SE_PLUTO_LOWELL 53
#define SE_PLUTO_PICKERING 54

#define SE_AST_OFFSET 10000

Additional asteroids

Body numbers of other asteroids are above SE_AST_OFFSET (=10000) and have to be constructed as follows:
ipl = SE_AST_OFFSET + Minor_Planet_Catalogue_number;
e.g. Eros : ipl = SE_AST_OFFSET + 433
The names of the asteroids and their catalogue numbers can be found in seasnam.txt.

Swiss Ephemeris 8
Examples are:

5 Astraea
6 Hebe
7 Iris
8 Flora
9 Metis
10 Hygiea
30 Urania
42 Isis not identical with "Isis-Transpluto"
153 Hilda (has an own asteroid belt at 4 AU)
227 Philosophia
251 Sophia
259 Aletheia
275 Sapientia
279 Thule (asteroid close to Jupiter)
375 Ursula
433 Eros
763 Cupido different from Witte's Cupido
944 Hidalgo
1181 Lilith (not identical with Dark Moon 'Lilith')
1221 Amor
1387 Kama
1388 Aphrodite
1862 Apollo (different from Witte's Apollon)
3553 Damocles highly eccentric orbit betw. Mars and Uranus
3753 Cruithne ("second moon" of earth)
4341 Poseidon Greek Neptune (different from Witte's Poseidon)
4464 Vulcano fire god (different from Witte's Vulkanus and intramercurian Vulcan)
5731 Zeus Greek Jupiter (different from Witte's Zeus)
7066 Nessus third named Centaur (beween Saturn and Pluto)

There are two ephemeris files for each asteroid (except the main asteroids), a long one and a short one:

se09999.se1 long-term ephemeris of asteroid number 9999, 3000 BC – 3000 AD
se09999s.se1 short ephemeris of asteroid number 9999, 1500 – 2100 AD

The larger file is about 10 times the size of the short ephemeris. If the user does not want an ephemeris for the
time before 1500 he might prefer to work with the short files. If so, just copy the files ending with ”s.se1” to your
hard disk. Swe_calc() tries the long one and on failure automatically takes the short one.
Asteroid ephemerides are looked for in the subdirectories ast0, ast1, ast2 .. ast9 etc of the ephemeris
directory and, if not found there, in the ephemeris directory itself. Asteroids with numbers 0 – 999 are expected in
directory ast0, those with numbers 1000 – 1999 in directory ast1 etc.

Note that not all asteroids can be computed for the whole period of Swiss Ephemeris. The orbits of some of
them are extremely sensitive to perturbations by major planets. E.g. CHIRON, cannot be computed for the time
before 650 AD and after 4650 AD because of close encounters with Saturn. Outside this time range, Swiss
Ephemeris returns the error code, an error message, and a position value 0. Be aware, that the user will have to
handle this case in his program. Computing Chiron transits for Jesus or Alexander the Great will not work.
The same is true for Pholus before 3850 BC, and for many other asteroids, as e.g. 1862 Apollo. He becomes
chaotic before the year 1870 AD, when he approaches Venus very closely. Swiss Ephemeris does not provide
positions of Apollo for earlier centuries !

Note on asteroid names
Asteroid names are listed in the file seasnam.txt. This file is in the ephemeris directory.

Swiss Ephemeris 9

Fictitious planets

Fictitious planets have numbers greater than or equal to 40. The user can define his or her own fictitious planets.
The orbital elements of these planets must be written into the file seorbel.txt. The function swe_calc() looks for
the file seorbel.txt in the ephemeris path set by swe_set_ephe_path(). If no orbital elements file is found,
swe_calc() uses the built-in orbital elements of the above mentioned Uranian planets and some other bodies.
The planet number of a fictitious planet is defined as

ipl = SE_FICT_OFFSET_1 + number_of_elements_set;

e.g. for Kronos: ipl = 39 + 4 = 43.

The file seorbel.txt has the following structure:

 # Orbital elements of fictitious planets
 # 27 Jan. 2000
 #
 # This file is part of the Swiss Ephemeris, from Version 1.60 on.
 #
 # Warning! These planets do not exist!
 #
 # The user can add his or her own elements.
 # 960 is the maximum number of fictitious planets.
 #
 # The elements order is as follows:
 # 1. epoch of elements (Julian day)
 # 2. equinox (Julian day or "J1900" or "B1950" or "J2000" or “JDATE”)
 # 3. mean anomaly at epoch
 # 4. semi-axis
 # 5. eccentricity
 # 6. argument of perihelion (ang. distance of perihelion from node)
 # 7. ascending node
 # 8. inclination
 # 9. name of planet
 #
 # use '#' for comments
 # to compute a body with swe_calc(), use planet number
 # ipl = SE_FICT_OFFSET_1 + number_of_elements_set,
 # e.g. number of Kronos is ipl = 39 + 4 = 43
 #
 # Witte/Sieggruen planets, refined by James Neely
J1900, J1900, 163.7409, 40.99837, 0.00460, 171.4333, 129.8325, 1.0833, Cupido # 1
J1900, J1900, 27.6496, 50.66744, 0.00245, 148.1796, 161.3339, 1.0500, Hades # 2
J1900, J1900, 165.1232, 59.21436, 0.00120, 299.0440, 0.0000, 0.0000, Zeus # 3
J1900, J1900, 169.0193, 64.81960, 0.00305, 208.8801, 0.0000, 0.0000, Kronos # 4
J1900, J1900, 138.0533, 70.29949, 0.00000, 0.0000, 0.0000, 0.0000, Apollon # 5
J1900, J1900, 351.3350, 73.62765, 0.00000, 0.0000, 0.0000, 0.0000, Admetos # 6
J1900, J1900, 55.8983, 77.25568, 0.00000, 0.0000, 0.0000, 0.0000, Vulcanus # 7
J1900, J1900, 165.5163, 83.66907, 0.00000, 0.0000, 0.0000, 0.0000, Poseidon # 8
 #
 # Isis-Transpluto; elements from "Die Sterne" 3/1952, p. 70ff.
 # Strubell does not give an equinox. 1945 is taken in order to
 # reproduce the as best as ASTRON ephemeris. (This is a strange
 # choice, though.)
 # The epoch according to Strubell is 1772.76.
 # 1772 is a leap year!
 # The fraction is counted from 1 Jan. 1772
2368547.66, 2431456.5, 0.0, 77.775, 0.3, 0.7, 0, 0, Isis-Transpluto # 9
 # Nibiru, elements from Christian Woeltge, Hannover
1856113.380954, 1856113.380954, 0.0, 234.8921, 0.981092, 103.966, -44.567, 158.708, Nibiru #
10
 # Harrington, elements from Astronomical Journal 96(4), Oct. 1988
2374696.5, J2000, 0.0, 101.2, 0.411, 208.5, 275.4, 32.4, Harrington # 11
 # according to W.G. Hoyt, "Planets X and Pluto", Tucson 1980, p. 63
2395662.5, 2395662.5, 34.05, 36.15, 0.10761, 284.75, 0, 0, Leverrier (Neptune) # 12
2395662.5, 2395662.5, 24.28, 37.25, 0.12062, 299.11, 0, 0, Adams (Neptune) # 13
2425977.5, 2425977.5, 281, 43.0, 0.202, 204.9, 0, 0, Lowell (Pluto) # 14
2425977.5, 2425977.5, 48.95, 55.1, 0.31, 280.1, 100, 15, Pickering (Pluto) # 15
J1900,JDATE, 252.8987988 + 707550.7341 * T, 0.13744, 0.019, 322.212069+1670.056*T,
47.787931-1670.056*T, 7.5, Vulcan # 16
Selena/White Moon
J2000,JDATE, 242.2205555, 0.05279142865925, 0.0, 0.0, 0.0, 0.0, Selena/White Moon, geo # 17

All orbital elements except epoch and equinox may have T terms, where

Swiss Ephemeris 10
T = (tjd – epoch) / 36525.
(See, e.g., Vulcan, the second last elements set (not the ”Uranian” Vulcanus but the intramercurian hypothetical
planet Vulcan).) ”T * T”, ”T2”, ”T3” are also allowed.
The equinox can either be entered as a Julian day or as ”J1900” or ”B1950” or ”J1900” or, if the equinox of date
is required, as ”JDATE”. If you use T terms, note that precession has to be taken into account with JDATE,
whereas it has to be neclected with fixed equinoxes.

No T term is required with the mean anomaly, i.e. for the speed of the body, because our software can compute it
from semi-axis and gravity. However, a mean anomaly T term had to be added with Vulcan because its speed is
not in agreement with the laws of physics. In such cases, the software takes the speed given in the elements and
does not compute it internally.

From Version 1.62 on, the software also accepts orbital elements for fictitious bodies that move about the earth.
As an example, study the last elements set in the excerpt of seorbel.txt above. After the name of the body, ”, geo”
has to be added.

Swiss Ephemeris 11

Obliquity and nutation

A special body number SE_ECL_NUT is provided to compute the obliquity of the ecliptic and the nutation. Of
course nutation is already added internally to the planetary coordinates by swe_calc() but sometimes it will be
needed as a separate value.

iflgret = swe_calc(tjd_et, SE_ECL_NUT, 0, x, serr);

x is an array of 6 doubles as usual. They will be filled as follows:

x[0] = true obliqutiy of the Ecliptic (includes nutation)
x[1] = mean obliquity of the Ecliptic
x[2] = nutation in longitude
x[3] = nutation in obliquity
x[4] = x[5] = 0

2.4. Options chosen by flag bits (long iflag)

2.4.1. The use of flag bits

If no bits are set, i.e. if iflag == 0, swe_calc() computes what common astrological ephemerides (as available
in book shops) supply, i.e. an apparent body position in geocentric ecliptic polar coordinates (longitude,
latitude, and distance) relative to the true equinox of the date.
If the speed of the body is required, set iflag = SEFLG_SPEED
For mathematical points as the mean lunar node and the mean apogee, there is no apparent position.
Swe_calc() returns true positions for these points.
If you need another kind of computation, use the flags explained in the following paragraphs (c.f. swephexp.h).
Their names begin with ‚SEFLG_‘. To combine them, you have to concatenate them (inclusive-or) as in the
following example:

iflag = SEFLG_SPEED | SEFLG_TRUEPOS; (or: iflag = SEFLG_SPEED + SEFLG_TRUEPOS;) // C
iflag = SEFLG_SPEED or SEFLG_TRUEPOS;(or: iflag = SEFLG_SPEED + SEFLG_TRUEPOS;) // Pascal

With this value of iflag, swe_calc() will compute true positions (i.e. not accounted for light-time) with speed.
The flag bits, which are defined in swephexp.h, are:

#define SEFLG_JPLEPH 1L // use JPL ephemeris
#define SEFLG_SWIEPH 2L // use SWISSEPH ephemeris, default
#define SEFLG_MOSEPH 4L // use Moshier ephemeris

#define SEFLG_HELCTR 8L // return heliocentric position
#define SEFLG_TRUEPOS 16L // return true positions, not apparent
#define SEFLG_J2000 32L // no precession, i.e. give J2000 equinox
#define SEFLG_NONUT 64L // no nutation, i.e. mean equinox of date
#define SEFLG_SPEED3 128L // speed from 3 positions (do not use it, SEFLG_SPEED is
 // faster and preciser.)
#define SEFLG_SPEED 256L // high precision speed (analyt. comp.)
#define SEFLG_NOGDEFL 512L // turn off gravitational deflection
#define SEFLG_NOABERR 1024L // turn off 'annual' aberration of light
#define SEFLG_EQUATORIAL 2048L // equatorial positions are wanted
#define SEFLG_XYZ 4096L // cartesian, not polar, coordinates
#define SEFLG_RADIANS 8192L // coordinates in radians, not degrees
#define SEFLG_BARYCTR 16384L // barycentric positions
#define SEFLG_TOPOCTR (32*1024L) // topocentric positions
#define SEFLG_SIDEREAL (64*1024L) // sidereal positions

2.4.2. Ephemeris flags

The flags to choose an ephemeris are: (s. swephexp.h)

SEFLG_JPLEPH /* use JPL ephemeris */
SEFLG_SWIEPH /* use Swiss Ephemeris */

Swiss Ephemeris 12
SEFLG_MOSEPH /* use Moshier ephemeris */

If none of this flags is specified, swe_calc() tries to compute the default ephemeris. The default ephemeris is
defined in swephexp.h:

#define SEFLG_DEFAULTEPH SEFLG_SWIEPH
In this case the default ephemeris is Swiss Ephemeris. If you have not specified an ephemeris in iflag,
swe_calc() tries to compute a Swiss Ephemeris position. If it does not find the required Swiss Ephemeris file
either, it computes a Moshier position.

2.4.3. Speed flag

Swe_calc() does not compute speed if you do not add the speed flag SEFLG_SPEED. E.g.

iflag |= SEFLG_SPEED;
The computation of speed is usually cheap, so you may set this bit by default even if you do not need the speed.

2.4.4. Coordinate systems, degrees and radians

SEFLG_EQUATORIAL returns equatorial positions: rectascension and declination.
SEFLG_XYZ returns x, y, z coordinates instead of longitude, latitude, and distance.
SEFLG_RADIANS returns position in radians, not degrees.

E.g. to compute rectascension and declination, write:

iflag = SEFLG_SWIEPH | SEFLG_SPEED | SEFLG_EQUATORIAL;

2.4.5. Specialties (going beyond common interest)

a. True or apparent positions
Common ephemerides supply apparent geocentric positions. Since the journey of the light from a planet to the
earth takes some time, the planets are never seen where they actually are, but where they were a few minutes or
hours before. Astrology uses to work with the positions we see. (More precisely: with the positions we would
see, if we stood at the center of the earth and could see the sky. Actually, the geographical position of the
observer could be of importance as well and topocentric positions could be computed, but this is usually not
taken into account in astrology.). The geocentric position for the earth (SE_EARTH) is returned as zero.
To compute the true geometrical position of a planet, disregarding light-time, you have to add the flag
SEFLG_TRUEPOS.

b. Topocentric positions
To compute topocentric positions, i.e. positions referred to the place of the observer (the birth place) rather than
to the center of the earth, do as follows:
• call swe_set_topo(geo_lon, geo_lat, altitude_above_sea) (The longitude and latitude must be in

degrees, the altitude in meters.)
• add the flag SEFLG_TOPOCTR to iflag
• call swe_calc(...)

c. Heliocentric positions
To compute a heliocentric position, add SEFLG_HELCTR.
A heliocentric position can be computed for all planets including the moon. For the sun, lunar nodes and lunar
apogees the coordinates are returned as zero; no error message appears.

d. Barycentric positions
SEFLG_BARYCTR yields coordinates as referred to the solar system barycenter. However, this option is not
completely implemented. It was used for program tests during development. It works only with the JPL and the
Swiss Ephemeris, not with the Moshier ephemeris; and only with physical bodies, but not with the nodes and
the apogees.
Moreover, the barycentric Sun of Swiss Ephemeris has ”only” a precision of 0.1”. Higher accuracy would have
taken a lot of storage, on the other hand it is not needed for precise geocentric and heliocentric positions. For
more precise barycentric positions the JPL ephemeris file should be used.
A barycentric position can be computed for all planets including the sun and moon. For the lunar nodes and
lunar apogees the coordinates are returned as zero; no error message appears.

Swiss Ephemeris 13
e. Astrometric positions
For astrometric positions, which are sometimes given in the Astronomical Almanac, the light-time correction is
computed, but annual aberration and the light-deflection by the sun neglected. This can be done with
SEFLG_NOABERR and SEFLG_NOGDEFL. For positions related to the mean equinox of 2000, you must set
SEFLG_J2000 and SEFLG_NONUT, as well.

f. True or mean equinox of date
Swe_calc() usually computes the positions as referred to the true equinox of the date (i.e. with nutation). If you
want the mean equinox, you can turn nutation off, using the flag bit SEFLG_NONUT.

g. J2000 positions and positions referred to other equinoxes
Swe_calc() usually computes the positions as referred to the equinox of date. SEFLG_J2000 yields data
referred to the equinox J2000. For positions referred to other equinoxes, SEFLG_SIDEREAL has to be set and
the equinox specified by swe_set_sid_mode(). For more information, read the description of this function.

h. Sidereal positions
To compute sidereal positions, set bit SEFLG_SIDEREAL and use the function swe_set_sid_mode() in order
to define the ayanamsha you want. For more information, read the description of this function.

2.5. Position and Speed (double xx[6])

swe_calc() returns the coordinates of position and velocity in the following order:

Ecliptic position Equatorial position (SEFLG_EQUATORIAL)
Longitude Rectascension
Latitude Declination
Distance in AU distance in AU
Speed in longitude (deg/day) Speed in rectascension (deg/day)
Speed in latitude (deg/day) Speed in declination (deg/day)
Speed in distance (AU/day) Speed in distance (AU/day)

If you need rectangular coordinates (SEFLG_XYZ), swe_calc() returns x, y, z, dx, dy, dz in AU.
Once you have computed a planet, e.g., in ecliptic coordinates, its equatorial position or its rectangular
coordinates are available, too. You can get them very cheaply (little CPU time used), calling again swe_calc()
with the same parameters, but adding SEFLG_EQUATORIAL or SEFLG_XYZ to iflag. swe_calc() will not
compute the body again, just return the data specified from internal storage.

3. The function swe_get_planet_name()
This function allows to find a planetary or asteroid name, when the planet number is given. The function definition
is

char* swe_get_planet_name(int ipl, char *spname);

If an asteroid name is wanted, the function does the following:

• The name is first looked for in the asteroid file.
• Because many asteroids, especially the ones with high catalogue numbers, have no names yet (or have only

a preliminary designation like 1968 HB), and because the Minor Planet Center of the IAU add new names
quite often, it happens that there is no name in the asteroid file although the asteroid has already been given
a name. For this, we have the file seasnam.txt, a file that contains a list of all named asteroid and is usually
more up to date. If swe_calc() finds a preliminary designation, it looks for a name in this file.

The file seasnam.txt can be updated by the user. To do this, download the names list from the Minor Planet
Center http://cfa-www.harvard.edu/iau/lists/MPNames.html, rename it as seasnam.txt and move it into
your ephemeris directory.

The file seasnam.txt need not be ordered in any way. There must be one asteroid per line, first its catalogue
number, then its name. The asteroid number may or may not be in brackets.

Swiss Ephemeris 14
Example:

(3192) A'Hearn
(3654) AAS
(8721) AMOS
(3568) ASCII
(2848) ASP
(677) Aaltje
 ...

4. Fixed stars functions

4.1 swe_fixstar_ut
The function swe_fixstar_ut() was introduced with Swisseph version 1.60. It does exactly the same as
swe_fixstar() except that it expects Universal Time rather than Ephemeris time as an input value. (cf.
swe_calc_ut() and swe_calc())
The functions swe_fixstar_ut() and swe_fixstar() computes fixed stars. They are defined as follows:

long swe_fixstar_ut(char* star, double tjd_ut, long iflag, double* xx, char* serr);
where
star =name of fixed star to be searched, returned name of found star
tjd_ut =Julian day in Universal Time
iflag =an integer containing several flags that indicate what kind of computation is wanted
xx =array of 6 doubles for longitude, latitude, distance, speed in long., speed in lat., and speed in dist.
serr[256] =character string to contain error messages in case of error.

4.2 swe_fixstar()
long swe_fixstar(char *star, double tjd_et, long iflag, double* xx, char* serr);
same, but tjd_et= Julian day in Ephemeris Time

The parameter star must provide for at least 40 characters for the returned star name (twice
SE_MAX_STNAME as defined in swephexp.h). If a star is found, its name is returned in this field in the format
traditional_name, nomenclature_name e.g. "Aldebaran,alTau".

The function has three modes to search for a star in the file fixstars.cat:

• star contains a positive number (in ASCII string format, e.g. "234"): The 234-th non-comment line in the file

fixstars.cat is used. Comment lines begin with # and are ignored.
• star contains a traditional name: the first star in the file fixstars.cat is used whose traditional name fits the

given name. All names are mapped to lower case before comparison. If star has n characters, only the first
n characters of the traditional name field are compared. If a comma appears after a non-zero-length
traditional name, the traditional name is cut off at the comma before the search. This allows the reuse of the
returned star name from a previous call in the next call.

• star begins with a comma, followed by a nomenclature name, e.g. ",alTau": the star with this name in the
nomenclature field (the second field) is returned. Letter case is observed in the comparison for
nomenclature names.

For correct spelling of nomenclature names, see file fixstars.cat. Nomenclature names are usually composed of
a Greek letter and the name of a star constellation. The Greek letters were originally used to write numbers,
therefore to number the stars of the constellation. The abbreviated nomenclature names we use in fixstars.cat
are constructed from two lowercase letters for the Greek letter (e.g. ”al” for ”alpha”) and three letters for the
constellation (e.g. ”Tau” for ”Tauri”).

The function and the DLL should survive damaged fixstars.cat files which contain illegal data and star names
exceeding the accepted length. Such fields are cut to acceptable length.
There are two special entries in the file fixstars.cat:

• an entry for the Galactic Center, named "Gal. Center" with one blank.
• a star named "AA_page_B40" which is the star calculation sample of Astronomical Almanac (our bible of

the last two years), page B40.

Swiss Ephemeris 15

You may edit the star catalogue and move the stars you prefer to the top of the file. This will increase the speed
of your computations. The search mode is linear through the whole star file for each call of swe_fixstar().
As for the explanation of the other parameters, see swe_calc().
Barycentric positions are not implemented. The difference between geocentric and heliocentric fix star position is
noticeable and arises from parallax and gravitational deflection.
Attention: swe_fixstar() does not compute speeds of the fixed stars. If you need them, you have to compute
them on your own, calling swe_fixstar() for a second (and third) time.

5. Apsides functions

5.1 swe_nod_aps_ut
The functions swe_nod_aps_ut() and swe_nod_aps() compute planetary nodes and apsides (perihelia,
aphelia, second focal points of the orbital ellipses). Both functions do exactly the same except that they expect a
different time parameter (cf. swe_calc_ut() and swe_calc()).

The definitions are:

int32 swe_nod_aps_ut(double tjd_ut, int32 ipl, int32 iflag, int32 method, double *xnasc, double
*xndsc, double *xperi, double *xaphe, char *serr);

where
tjd_ut =Julian day in Universal Time
ipl =planet number
iflag =same as with swe_calc_ut() and swe_fixstar_ut()
method =another integer that specifies the calculation method, see explanations below
xnasc =array of 6 doubles for ascending node
xndsc =array of 6 doubles for descending node
xperi =array of 6 doubles for perihelion
xaphe =array of 6 doubles for aphelion
serr[256] =character string to contain error messages in case of error.

5.2 swe_nod_aps()
int32 swe_nod_aps(double tjd_et, int32 ipl, int32 iflag, int32 method, double *xnasc, double *xndsc,

double *xperi, double *xaphe, char *serr);
same, but

tjd_et = Julian day in Ephemeris Time

The parameter iflag allows the same specifications as with the function swe_calc_ut(). I.e., it contains the
Ephemeris flag, the heliocentric, topocentric, speed, nutation flags etc. etc.
The parameter method tells the function what kind of nodes or apsides are required:

#define SE_NODBIT_MEAN 1

This is also the default. Mean nodes and apsides are calculated for the bodies that have them, i.e. for the Moon
and the planets Mercury through Neptune, osculating ones for Pluto and the asteroids.

#define SE_NODBIT_OSCU 2

Osculating nodes and apsides are calculated for all bodies.

#define SE_NODBIT_OSCU_BAR 4

Osculating nodes and apsides are calculated for all bodies. With planets beyond Jupiter, they are computed from
a barycentric ellipse. Cf. the explanations in swisseph.doc.

If this bit is combined with SE_NODBIT_MEAN, mean values are given for the planets Mercury - Neptun.

#define SE_NODBIT_FOPOINT 256

The second focal point of the orbital ellipse is computed and returned in the array of the aphelion. This bit can be
combined with any other bit.

Swiss Ephemeris 16

6. Eclipse and planetary phenomena functions

There are the following functions for eclipse and occultation calculations.

Solar eclipses:
• swe_sol_eclipse_when_loc(tjd...) finds the next eclipse for a given geographic position.
• swe_sol_eclipse_when_glob(tjd...) finds the next eclipse globally.
• swe_sol_eclipse_where() computes the geographic location of a solar eclipse for a given tjd.
• swe_sol_eclipse_how() computes attributes of a solar eclipse for a given tjd, geographic longitude,

latitude and height.

Occultations of planets by the moon:
These functions can also be used for solar eclipses. But they are slightly less efficient.
• swe_lun_occult_when_loc(tjd...) finds the next occultation for a body and a given geographic position.
• swe_lun_occult_when_glob(tjd...) finds the next occultation of a given body globally.
• swe_lun_occult_where() computes the geographic location of an occultation for a given tjd.

Lunar eclipses:
• swe_lun_eclipse_when(tjd...) finds the next lunar eclipse.
• swe_lun_eclipse_how() computes the attributes of a lunar eclipse for a given tjd.

Risings, settings, and meridian transits of planets and stars:
• swe_rise_trans()

Planetary phenomena:
• swe_pheno_ut() and swe_pheno() compute phase angle, phase, elongation, apparent diameter, and

apparent magnitude of the Sun, the Moon, all planets and asteroids.

6.1. swe_sol_eclipse_when_loc() and swe_lun_occult_when_loc()

To find the next eclipse for a given geographic position, use swe_sol_eclipse_when_loc().

int32 swe_sol_eclipse_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 SE_ECL_VISIBLE,
 SE_ECL_MAX_VISIBLE,
 SE_ECL_1ST_VISIBLE, SE_ECL_2ND_VISIBLE
 SE_ECL_3ST_VISIBLE, SE_ECL_4ND_VISIBLE

 tret[0] time of maximum eclipse
 tret[1] time of first contact
 tret[2] time of second contact
 tret[3] time of third contact
 tret[4] time of forth contact
 tret[5] time of sunrise between first and forth contact (not implemented so far)
 tret[6] time of sunset beween first and forth contact (not implemented so far)

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one

Swiss Ephemeris 17
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] elongation of moon in degrees */

6.2. swe_sol_eclipse_when_glob()

To find the next eclipse globally:

int32 swe_sol_eclipse_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. or 0, if any eclipse type */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL or SE_ECL_ANNULAR_TOTAL
 SE_ECL_CENTRAL
 SE_ECL_NONCENTRAL

 tret[0] time of maximum eclipse
 tret[1] time, when eclipse takes place at local apparent noon
 tret[2] time of eclipse begin
 tret[3] time of eclipse end
 tret[4] time of totality begin
 tret[5] time of totality end
 tret[6] time of center line begin
 tret[7] time of center line end
 tret[8] time when annular-total eclipse becomes total not implemented so far
 tret[9] time when annular-total eclipse becomes annular again not implemented so far

 declare as tret[10] at least !
 */

6.3. swe_sol_eclipse_how ()

To calculate the attributes of an eclipse for a given geographic position and time:

int32 swe_sol_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos /* geogr. longitude, latitude, height above sea
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 0, if no eclipse is visible at geogr. position.

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd

Swiss Ephemeris 18
 attr[7] elongation of moon in degrees

6.4. swe_sol_eclipse_where ()

This function can be used to find out the geographic position, where, for a given time, a central eclipse is central
or where a non-central eclipse is maximal.
If you want to draw the eclipse path of a total or annular eclipse on a map, first compute the start and end time of
the total or annular phase with swe_sol_eclipse_when_glob(), then call swe_sol_eclipse_how() for several
time intervals to get geographic positions on the central path. The northern and southern limits of the umbra and
penumbra are not implemented yet.

int32 swe_sol_eclipse_where (
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 if there is no solar eclipse at tjd
 SE_ECL_TOTAL
 SE_ECL_ANNULAR
 SE_ECL_TOTAL | SE_ECL_CENTRAL
 SE_ECL_TOTAL | SE_ECL_NONCENTRAL
 SE_ECL_ANNULAR | SE_ECL_CENTRAL
 SE_ECL_ANNULAR | SE_ECL_NONCENTRAL
 SE_ECL_PARTIAL

 geopos[0]: geographic longitude of central line
 geopos[1]: geographic latitude of central line

 not implemented so far:
 geopos[2]: geographic longitude of northern limit of umbra
 geopos[3]: geographic latitude of northern limit of umbra
 geopos[4]: geographic longitude of southern limit of umbra
 geopos[5]: geographic latitude of southern limit of umbra
 geopos[6]: geographic longitude of northern limit of penumbra
 geopos[7]: geographic latitude of northern limit of penumbra
 geopos[8]: geographic longitude of southern limit of penumbra
 geopos[9]: geographic latitude of southern limit of penumbra

 eastern longitudes are positive,
 western longitudes are negative,
 northern latitudes are positive,
 southern latitudes are negative

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] angular distance of moon from sun in degrees

 declare as attr[20]!
 */

Swiss Ephemeris 19
6.5. swe_lun_occult_when_loc()
To find the next occultation of a planet or star by the moon for a given location, use
swe_lun_occult_when_loc().
The same function can also be used for local solar eclipses instead of swe_sol_eclipse_when_loc(), but is a bit
less efficient.

/* Same declaration as swe_sol_eclipse_when_loc().
 * In addition:
 * int32 ipl planet number of occulted body
 * char* starname name of occulted star. Must be NULL or "", if a planetary
 * occultation is to be calculated. For use of this field,
 * see swe_fixstar().
 * int32 ifl ephemeris flag. If you want to have only one conjunction
 * of the moon with the body tested, add the following flag:
 * ifl |= SE_ECL_ONE_TRY. If this flag is not set,
 * the function will search for an occultation until it
 * finds one. For bodies with ecliptical latitudes > 5,
 * the function may search successlessly until it reaches
 * the end of the ephemeris.
 */
int32 swe_lun_occult_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

If an occultation of any planet is wanted, call the function for all planets you want to consider and find the
one with the smallest tret[1] (first contact). (If searching backward, find the one with the greatest tret[1]).
For efficiency, set ifl |= SE_ECL_ONE_TRY. With this flag, only the next conjunction of the moon with the
bodies is checked. If no occultation has been found, repeat the calculation with tstart = tstart + 20.

The function returns:

/* retflag
 -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 (if no occultation/no eclipse found)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL
 SE_ECL_VISIBLE,
 SE_ECL_MAX_VISIBLE,
 SE_ECL_1ST_VISIBLE, SE_ECL_2ND_VISIBLE
 SE_ECL_3ST_VISIBLE, SE_ECL_4ND_VISIBLE
 These return values (except the SE_ECL_ANNULAR) also appear with occultations.

 tret[0] time of maximum eclipse
 tret[1] time of first contact
 tret[2] time of second contact
 tret[3] time of third contact
 tret[4] time of forth contact
 tret[5] time of sunrise between first and forth contact (not implemented so far)
 tret[6] time of sunset beween first and forth contact (not implemented so far)

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] elongation of moon in degrees */

Swiss Ephemeris 20
6.6. swe_lun_occult_when_glob()
To find the next occultation of a planet or star by the moon globally (not for a particular geographic location),
use swe_lun_occult_when_glob().
The same function can also be used for global solar eclipses instead of swe_sol_eclipse_when_glob(), but is a bit
less efficient.

/* Same declaration as swe_sol_eclipse_when_glob().
 * In addition:
 * int32 ipl planet number of occulted body
 * char* starname name of occulted star. Must be NULL or "", if a planetary
 * occultation is to be calculated. For use of this field,
 * see swe_fixstar().
 * int32 ifl ephemeris flag. If you want to have only one conjunction
 * of the moon with the body tested, add the following flag:
 * ifl |= SE_ECL_ONE_TRY. If this flag is not set,
 * the function will search for an occultation until it
 * finds one. For bodies with ecliptical latitudes > 5,
 * the function may search successlessly until it reaches
 * the end of the ephemeris.
 */
int32 swe_lun_occult_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

If an occultation of any planet is wanted, call the function for all planets you want to consider and find the
one with the smallest tret[1] (first contact). (If searching backward, find the one with the greatest tret[1]).
For efficiency, set ifl |= SE_ECL_ONE_TRY. With this flag, only the next conjunction of the moon with the
bodies is checked. If no occultation has been found, repeat the calculation with tstart = tstart + 20.

The function returns:

/* retflag
 -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 (if no occultation / eclipse has been found)
 SE_ECL_TOTAL or SE_ECL_ANNULAR or SE_ECL_PARTIAL or SE_ECL_ANNULAR_TOTAL
 SE_ECL_CENTRAL
 SE_ECL_NONCENTRAL

 tret[0] time of maximum eclipse
 tret[1] time, when eclipse takes place at local apparent noon
 tret[2] time of eclipse begin
 tret[3] time of eclipse end
 tret[4] time of totality begin
 tret[5] time of totality end
 tret[6] time of center line begin
 tret[7] time of center line end
 tret[8] time when annular-total eclipse becomes total not implemented so far
 tret[9] time when annular-total eclipse becomes annular again not implemented so far

 declare as tret[10] at least !
 */

6.7. swe_lun_occult_where ()

Swiss Ephemeris 21
Similar to swe_sol_eclipse_where(), this function can be used to find out the geographic position, where, for a
given time, a central eclipse is central or where a non-central eclipse is maximal. With occultations, it tells us, at
which geographic location the occulted body is in the middle of the lunar disc or closest to it. Because
occultations are always visible from a very large area, this is not very interesting information. But it may
become more interesting as soon as the limits of the umbra (and penumbra) will be implemented.

int32 swe_lun_occult_where (
double tjd_ut, /* time, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 0 if there is no solar eclipse (occultation) at tjd
 SE_ECL_TOTAL
 SE_ECL_ANNULAR
 SE_ECL_TOTAL | SE_ECL_CENTRAL
 SE_ECL_TOTAL | SE_ECL_NONCENTRAL
 SE_ECL_ANNULAR | SE_ECL_CENTRAL
 SE_ECL_ANNULAR | SE_ECL_NONCENTRAL
 SE_ECL_PARTIAL

 geopos[0]: geographic longitude of central line
 geopos[1]: geographic latitude of central line

 not implemented so far:
 geopos[2]: geographic longitude of northern limit of umbra
 geopos[3]: geographic latitude of northern limit of umbra
 geopos[4]: geographic longitude of southern limit of umbra
 geopos[5]: geographic latitude of southern limit of umbra
 geopos[6]: geographic longitude of northern limit of penumbra
 geopos[7]: geographic latitude of northern limit of penumbra
 geopos[8]: geographic longitude of southern limit of penumbra
 geopos[9]: geographic latitude of southern limit of penumbra

 eastern longitudes are positive,
 western longitudes are negative,
 northern latitudes are positive,
 southern latitudes are negative

 attr[0] fraction of solar diameter covered by moon (magnitude)
 attr[1] ratio of lunar diameter to solar one
 attr[2] fraction of solar disc covered by moon (obscuration)
 attr[3] diameter of core shadow in km
 attr[4] azimuth of sun at tjd
 attr[5] true altitude of sun above horizon at tjd
 attr[6] apparent altitude of sun above horizon at tjd
 attr[7] angular distance of moon from sun in degrees

 declare as attr[20]!
 */

6.8. swe_lun_eclipse_when ()
To find the next lunar eclipse:

int32 swe_lun_eclipse_when(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */

Swiss Ephemeris 22
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. or 0, if any eclipse type */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
 tret[0] time of maximum eclipse
 tret[1]
 tret[2] time of partial phase begin (indices consistent with solar eclipses)
 tret[3] time of partial phase end
 tret[4] time of totality begin
 tret[5] time of totality end
 tret[6] time of penumbral phase begin
 tret[7] time of penumbral phase end
 */

6.9. swe_lun_eclipse_how ()

This function computes the attributes of a lunar eclipse at a given time:

int32 swe_lun_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* input array, geopos, geolon, geoheight
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/* retflag -1 (ERR) on error (e.g. if swe_calc() for sun or moon fails)
 SE_ECL_TOTAL or SE_ECL_PENUMBRAL or SE_ECL_PARTIAL
 0 if there is no eclipse

attr[0] umbral magnitude at tjd
attr[1] penumbral magnitude
attr[4] azimuth of moon at tjd. Not implemented so far
attr[5] true altitude of moon above horizon at tjd. Not implemented so far
attr[6] apparent altitude of moon above horizon at tjd. Not implemented so far
attr[7] distance of moon from opposition in degrees

 declare as attr[20] at least !
 */

6.10. swe_rise_trans(), risings, settings, meridian transits

This function computes the times of rising, setting and meridian transits for all planets, asteroids, the moon, and
the fixed stars. Its definition is as follows:

int32 swe_rise_trans(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */
char *starname, /* star name, if star */
int32 epheflag, /* ephemeris flag */
int32 rsmi, /* integer specifying that rise, set, orone of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */

Swiss Ephemeris 23
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double *tret, /* return address (double) for rise time etc. */
char *serr); /* return address for error message */

The variable rsmi can have the following values:

/* for swe_rise_transit() */
#define SE_CALC_RISE 1
#define SE_CALC_SET 2
#define SE_CALC_MTRANSIT 4 /* upper meridian transit (southern for northern geo. latitudes) */
#define SE_CALC_ITRANSIT 8 /* lower meridian transit (northern, below the horizon) */
#define SE_BIT_DISC_CENTER 256 /* to be added to SE_CALC_RISE/SET */
 /* if rise or set of disc center is requried */
#define SE_BIT_NO_REFRACTION 512 /* to be added to SE_CALC_RISE/SET, */
 /* if refraction is not to be considered */

rsmi = 0 will return risings.
The rising times depend on the atmospheric pressure and temperature. atpress expects the atmospheric
pressure in millibar (hectopascal); attemp the temperature in degrees Celsius.
If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in
geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

6.11. swe_pheno_ut() and swe_pheno(), planetary phenomena

These functions compute phase, phase angle, elongation, apparent diameter, apparent magnitude for the Sun,
the Moon, all planets and asteroids. The two functions do exactly the same but expect a different time parameter.

int32 swe_pheno_ut(
double tjd_ut, /* time Jul. Day UT */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

int32 swe_pheno(
double tjd_et, /* time Jul. Day ET */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

The function returns:

/*
 attr[0] = phase angle (earth-planet-sun)
 attr[1] = phase (illumined fraction of disc)
 attr[2] = elongation of planet
 attr[3] = apparent diameter of disc
 attr[4] = apparent magnitude

 declare as attr[20] at least !

 Note: the lunar magnitude is quite a complicated thing,
 but our algorithm is very simple.
 The phase of the moon, its distance from the earth and
 the sun is considered, but no other factors.

 iflag also allows SEFLG_TRUEPOS, SEFLG_HELCTR
 */

6.12. swe_azalt(), horizontal coordinates, azimuth, altitude

Swiss Ephemeris 24
swe_azalt() computes the horizontal coordinates (azimuth and altitude) of a planet or a star from either ecliptical
or equatorial coordinates.

void swe_azalt(
 double tjd_ut, // UT
 int32 calc_flag, // SE_ECL2HOR or SE_EQU2HOR
 double *geopos, // array of 3 doubles: geograph. long., lat., height
 double atpress, // atmospheric pressure in mbar (hPa)
 double attemp, // atmospheric temperature in degrees Celsius
 double *xin, // array of 3 doubles: position of body in either ecliptical or equatorial coordinates,
 // depending on calc_flag
 double *xaz); // return array of 3 doubles, containing azimuth, true altitude, apparent altitude

If calc_flag=SE_ECL2HOR, set xin[0]= ecl. long., xin[1]= ecl. lat., (xin[2]=distance (not required));
else

if calc_flag= E_EQU2HOR, set xin[0]=rectascension, xin[1]=declination, (xin[2]= distance (not required));

#define SE_ECL2HOR 0
#define SE_EQU2HOR 1

The return values are:

xaz[0] = azimuth, i.e. position degree, measured from the south point to west.
xaz[1] = true altitude above horizon in degrees.
xaz[2] = apparent (refracted) altitude above horizon in degrees.

The apparent altitude of a body depends on the atmospheric pressure and temperature. If only the true altitude is
required, these parameters can be neglected.
If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in
geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

6.13. swe_azalt_rev()
The function swe_azalt_rev() is not precisely the reverse of swe_azalt(). It computes either ecliptical or
equatorial coordinates from azimuth and true altitude. If only an apparent altitude is given, the true altitude has to
be computed first with the function swe_refrac() (see below).
It is defined as follows:

void swe_azalt_rev(
 double tjd_ut,
 int32 calc_flag, /* either SE_HOR2ECL or SE_HOR2EQU */
 double *geopos, /* array of 3 doubles for geograph. pos. of observer */
 double *xin, /* array of 2 doubles for azimuth and true altitude of planet */
 double *xout); // return array of 2 doubles for either ecliptic or
 // equatorial coordinates, depending on calc_flag

For the definition of the azimuth and true altitude, see chapter 4.9 on swe_azalt().

#define SE_HOR2ECL 0
#define SE_HOR2EQU 1

6.14. swe_refrac(), refraction
The refraction function swe_refrac() calculates either the true altitude from the apparent altitude or the apparent
altitude from the apparent altitude. Its definition is:

double swe_refrac(
double inalt,
double atpress, /* atmospheric pressure in mbar (hPa) */
double attemp, /* atmospheric temperature in degrees Celsius */
int32 calc_flag); /* either SE_TRUE_TO_APP or SE_APP_TO_TRUE */

where
#define SE_TRUE_TO_APP 0
#define SE_APP_TO_TRUE 1

The refraction depends on the atmospheric pressure and temperature at the location of the observer.

Swiss Ephemeris 25
If atpress is given the value 0, the function estimates the pressure from the geographical altitude given in
geopos[2] and attemp. If geopos[2] is 0, atpress will be estimated for sea level.

7. The date conversion functions
swe_julday(), swe_date_conversion(), swe_revjul()

These functions are needed to convert calendar dates to the astronomical time scale which measures time in
Julian days.

double swe_julday(int year, int month, int day, double hour, int gregflag);

int swe_date_conversion (
 int y , int m , int d , /* year, month, day */
 double hour, /* hours (decimal, with fraction) */
 char c, /* calendar ‘g’[regorian]|’j’[ulian] */
 double *tjd); /* return value for Julian day */

void swe_revjul (
 double tjd, /* Julian day number */
 int gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */
 int *year, /* target addresses for year, etc. */
 int *month, int *day, double *hour);

swe_julday() and swe_date_conversion() compute a Julian day number from year, month, day, and hour.
swe_date_conversion() checks in addition whether the date is legal. It returns OK or ERR.
swe_revjul() is the reverse function of swe_julday(). It computes year, month, day and hour from a Julian day
number.

The variable gregflag tells the function whether the input date is Julian calendar (gregflag = SE_JUL_CAL) or
Gregorian calendar (gregflag = SE_GREG_CAL).
Usually, you will set gregflag = SE_GREG_CAL.
The Julian day number has nothing to do with Julius Cesar, who introduced the Julian calendar, but was invented
by the monk Julianus. The Julian day number tells for a given date the number of days that have passed since
the creation of the world which was then considered to have happened on 1 Jan –4712 at noon. E.g. the 1.1.1900
corresponds to the Julian day number 2415020.5.
Midnight has always a JD with fraction 0.5, because traditionally the astronomical day started at noon. This was
practical because then there was no change of date during a night at the telescope. From this comes also the
fact that noon ephemerides were printed before midnight ephemerides were introduced early in the 20th century.

Mean solar time versus True solar time
Universal Time (UT or UTC) is based on Mean Solar Time, AKA Local Mean Time, which is a uniform
measure of time. A day has always the same length, independent on the time of the year.
In the centuries before mechanical clocks where used, when the reckoning of time was mostly based on sun
dials, the True Solar Time was used, also called Local Apparent Time.
The difference between Local Mean Time and Local Apparent Time is called the equation of time. This
difference can become as large as 20 minutes.
If a birth time of a historical person was noted in Local Apparent Time, it must first be converted to Local Mean
Time by applying the equation of time, before it can be used to compute Universal Time (for the houses) and
finally Ephemeris Time (for the planets).

There is a function for computing the correction value.

/* equation of time function returns the difference between local apparent and local mean time.
 e = LAT – LMT. tjd is ephemeris time */
int swe_time_equ(double tjd, double* e, char* serr);

If you first compute tjd on the basis of the registered Local Apparent Time, you convert it to Local Mean Time
with:

tjd_mean = tjd_app + e;

8. Time functions
/* delta t from Julian day number */

Swiss Ephemeris 26
double swe_deltat(double tjd);
/* get tidal acceleration used in swe_deltat() */
double swe_get_tid_acc(void);
/* set tidal acceleration to be used in swe_deltat() */
void swe_set_tid_acc(double t_acc);

The Julian day number, you compute from a birth date, will be Universal Time (UT, former GMT) and can be
used to compute the star time and the houses. However, for the planets and the other factors, you have to
convert UT to Ephemeris time (ET):

8.1 swe_deltat()
tjde = tjd + swe_deltat(tjd); where tjd = Julian day in UT, tjde = in ET

For precision fanatics: The value of delta t depends on the tidal acceleration in the motion of the moon. Its default
value corresponds to the state-of-the-art JPL ephemeris (e.g. DE406, s. swephexp.h). If you use another JPL
ephemeris, e.g. DE200, you may wish the tidal constant of DE200. This makes a difference of 0.5 time seconds
in 1900 and 4 seconds in 1800 (= 0.2” in the position of the sun). However, this effect is limited to the period 1620
- ~1997. To change the tidal acceleration, use the function

8.2 swe_set_tid_acc(), swe_get_tid_acc()

swe_set_tid_acc(acceleration); // Do this before calling deltat() !

The values that acceleration can have are listed in swephexp.h. (e.g. SE_TIDAL_200, etc.)
To find out the built-in value of the tidal acceleration, you can call

acceleration = swe_get_tidacc();

9. The function swe_set_topo() for topocentric planet positions
void swe_set_topo(double geolon, double geolat, double altitude);
 /* eastern longitude is positive, western longitude is negative,
 northern latitude is positive, southern latitude is negative */

This function must be called before topocentric planet positions for a certain birth place can be computed. It tells
Swiss Ephemeris, what geographic position is to be used. Geographic longitude geolon and latitude geolat must
be in degrees, the altitude above sea must be in meters. Neglecting the altitude can result in an error of about
2 arc seconds with the moon and at an altitude 3000 m. After calling swe_set_topo(), add SEFLG_TOPOCTR
to iflag and call swe_calc() as with an ordinary computation. E.g.:

swe_set_topo(geo_lon, geo_lat, altitude_above_sea);
iflag | = SEFLG_TOPOCTR;

for (i = 0; i < NPLANETS; i++) {
 iflgret = swe_calc(tjd, ipl, iflag, xp, serr);
 printf(”%f\n”, xp[0]);
}

The parameters set by swe_set_topo() survive swe_close().

10. Sidereal mode functions

10.1. swe_set_sid_mode()
void swe_set_sid_mode (int32 sid_mode, double t0, double ayan_t0);

This function can be used to specify the mode for sidereal computations.
swe_calc() or swe_fixstar() has then to be called with the bit SEFLG_SIDEREAL.
If swe_set_sid_mode() is not called, the default ayanamsha (Fagan/Bradley) is used.
If a predefined mode is wanted, the variable sid_mode has to be set, while t0 and ayan_t0 are not considered,
i.e. can be 0. The predefined sidereal modes are:

Swiss Ephemeris 27

#define SE_SIDM_FAGAN_BRADLEY 0
#define SE_SIDM_LAHIRI 1
#define SE_SIDM_DELUCE 2
#define SE_SIDM_RAMAN 3
#define SE_SIDM_USHASHASHI 4
#define SE_SIDM_KRISHNAMURTI 5
#define SE_SIDM_DJWHAL_KHUL 6
#define SE_SIDM_YUKTESHWAR 7
#define SE_SIDM_JN_BHASIN 8
#define SE_SIDM_BABYL_KUGLER1 9
#define SE_SIDM_BABYL_KUGLER2 10
#define SE_SIDM_BABYL_KUGLER3 11
#define SE_SIDM_BABYL_HUBER 12
#define SE_SIDM_BABYL_ETPSC 13
#define SE_SIDM_ALDEBARAN_15TAU 14
#define SE_SIDM_HIPPARCHOS 15
#define SE_SIDM_SASSANIAN 16
#define SE_SIDM_GALCENT_0SAG 17
#define SE_SIDM_J2000 18
#define SE_SIDM_J1900 19
#define SE_SIDM_B1950 20
#define SE_SIDM_USER 255

For information about the sidereal modes, read the chapter on sidereal calculations in swisseph.doc.
To define your own sidereal mode, use SE_SIDM_USER (= 255) and set the reference date (t0) and the initial
value of the ayanamsha (ayan_t0).

ayan_t0 = tropical_position_t0 – sidereal_position_t0.
Without additional specifications, the traditional method is used. The ayanamsha measured on the ecliptic of t0
is subtracted from tropical positions referred to the ecliptic of date. If a correct transformation to the ecliptic of t0
is required the following bit can be added (‘ored’) to the value of the variable sid_mode:

/* for projection onto ecliptic of t0 */
#define SE_SIDBIT_ECL_T0 256

E.g.:
swe_set_sid_mode(SEFLG_SASSANIAN + SEFLG_SIDBIT_ECL_T0, 0, 0);
iflag |= SEFLG_SIDEREAL;
for (i = 0; i < NPLANETS; i++) {
 iflgret = swe_calc(tjd, ipl, iflag, xp, serr);
 printf(”%f\n”, xp[0]);
}

The function swe_set_sidmode() can also be used for calculating ”precession-corrected transits”. Before
calculating the transits set:

swe_set_sid_mode(SEFLG_USER + SEFLG_SIDBIT_ECL_T0, tjd_et, 0);

where tjd_et is the Julian day of the natal chart (Ephemeris time)

For sidereal positions referred to the solar system rotation plane, use the flag

/* for projection onto solar system rotation plane */
#define SE_SIDBIT_SSY_PLANE 512

Note: the parameters set by swe_set_sid_mode() survive calls of the function swe_close().

10.2. swe_get_ayanamsa_ut() and swe_get_ayanamsa()
double swe_get_ayanamsa_ut(double tjd_ut);
double swe_get_ayanamsa(double tjd_et);

The function swe_get_ayanamsa_ut() was introduced with Swisseph Version 1.60 and expects Universal
Time instead of Ephemeris Time. (cf. swe_calc_ut() and swe_calc())
The two functions compute the ayanamsha, i.e. the distance of the tropical vernal point from the sidereal zero
point of the zodiac. The ayanamsha is used to compute sidereal planetary positions from tropical ones:

pos_sid = pos_trop – ayanamsha

Swiss Ephemeris 28
Before calling swe_get_ayanamsha(), you have to set the sidereal mode with swe_set_sid_mode, unless
you want the default sidereal mode, which is the Fagan/Bradley ayanamsha.

Swiss Ephemeris 29

11. The Ephemeris file related functions

11.1 swe_set_ephe_path()
If the environment variable SE_EPHE_PATH exists in the environment where Swiss Ephemeris is used, its
content is used to find the ephemeris files. The variable can contain a directory name, or a list of directory names
separated by ; (semicolon) on Windows or : (colon) on Unix.

int swe_set_ephe_path(char *path);

Usually an application will want to set its own ephemeris path by calling swe_ephe_path(), e.g.

swe_set_ephe_path(”C:\\SWEPH\\EPHE”);

The argument can be a single directory name or a list of directories, which are then searched in sequence. The
argument of this call is ignored if the environment variable SE_EPHE_PATH exists and is not empty.
If you want to make sure that your program overrides any environment variable setting, you can use putenv() to
set it to an empty string.

If the path is longer than 256 bytes, swe_set_ephe_path() sets the path \SWEPH\EPHE instead.
If no environment variable exists and swe_set_ephe_path() is never called, the built-in ephemeris path is
used. On Windows it is ”\sweph\ephe” relative to the current working drive, on Unix it is "/users/ephe".
Asteroid ephemerides are looked for in the subdirectories ast0, ast1, ast2 .. ast9 of the ephemeris directory
and, if not found there, in the ephemeris directory itself. Asteroids with numbers 0 – 999 are expected in directory
ast0, those with numbers 1000 – 1999 in directory ast1 etc.
The environment variable SE_EPHE_PATH is most convenient when a user has several applications installed
which all use the Swiss Ephemeris but would normally expect the ephemeris files in different application-specific
directories. The use can override this by setting the environment variable, which forces all the different
applications to use the same ephemeris directory. This allows him to use only one set of installed ephemeris files
for all different applications. A developer should accept this override feature and allow the sophisticated users to
exploit it.

11.2 swe_close()
/* close Swiss Ephemeris */
void swe_close(void);

At the end of your computations you can release most resources (open files and allocated memory) used by the
Swiss Ephemeris DLL.
The following parameters survive a call of swe_calc():
• the ephemeris path set by swe_set_ephe_path()
• the JPL file name set by swe_set_jpl_file()
• the geographical location set by swe_set_topo() for topocentric planetary positions
• the sidereal mode set by swe_set_sid_mode() for sidereal planetary positions

As soon as you make a call to swe_calc() or swe_fixstar(), the Swiss Ephemeris re-opens again.

11.3 swe_set_jpl_file()

/* set name of JPL ephemeris file */
int swe_set_jpl_file(char *fname);

If you work with the JPL ephemeris, SwissEph uses the default file name which is defined in swephexp.h as
SE_FNAME_DFT. Currently, it has the value ”de406.eph”.
If different JPL ephemeris file is required, call the function swe_set_jpl_file() to make the file name known to
the software, e.g.

swe_set_jpl_file(”de405.eph”);

This file must reside in the ephemeris path you are using for all your ephemeris files.
If the file name is longer than 256 byte, swe_set_jpl_file() cuts the file name to a length of 256 bytes. The error
will become visible after the first call of swe_calc(), when it will return zero positions and an error message.

Swiss Ephemeris 30

12. House cusp calculation

12.1 swe_houses()
/* house cusps, ascendant and MC */
int swe_houses(
double tjd_ut, /* Julian day number, UT */
double geolat, /* geographic latitude, in degrees */
double geolon, /* geographic longitude, in degrees
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
int hsys, /* house method, ascii code of one of the letters PKORCAEVXHTBG */
double *cusps, /* array for 13 doubles */
double *ascmc); /* array for 10 doubles */

12.2 swe_houses_armc()
int swe_houses_armc(
double armc, /* ARMC */
double geolat, /* geographic latitude, in degrees */
double eps, /* ecliptic obliquity, in degrees */
int hsys, /* house method, ascii code of one of the letters PKORCAEVXHTBG */
double *cusps, /* array for 13 doubles */
double *ascmc); /* array for 10 doubles */

12.3 swe_houses_ex()

/* extended function; to compute tropical or sidereal positions */
int swe_houses_ex(
 double tjd_ut, /* Julian day number, UT */
 int32 iflag, /* 0 or SEFLG_SIDEREAL or SEFLG_RADIANS */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
 int hsys, /* house method, ascii code of one of the letters PKORCAEVXHTBG */
 double *cusps, /* array for 13 doubles */
double *ascmc); /* array for 10 doubles */

The function swe_houses() is most comfortable, if you need the houses for a given date and geographic
position. Sometimes, however, you will want to compute houses from an ARMC, e.g. with the composite
horoscope which has no date, only the composite ARMC of two natal ARMCs. In such cases, you can use the
function swe_houses_armc(). To compute the composite ecliptic obliquity eps, you will have to call
sweph_calc() with ipl = SE_ECL_NUT for both birth dates and calculate the average of both eps.
Note that tjd_ut must be Universal Time, whereas planets are computed from Ephemeris Time

tjd_et = tjd_ut + delta_t(tjd_ut).
Also note that the array cusps must provide space for 13 doubles (declare as cusp[13]), otherwise you risk a
program crash. With house system ‘G’ (Gauquelin sector cusps), declare it as cusp[37].

Note: With house system ‘G’, the cusp numbering is in clockwise direction.

The extended house function swe_houses_ex() does exactly the same calculations as swe_houses(). The
difference is that swe_houses_ex() has a parameter iflag, which can be set to SEFLG_SIDEREAL, if sidereal
house positions are wanted. Before calling swe_houses_ex() for sidereal house positions, the sidereal mode
can be set by calling the function swe_set_sid_mode(). If this is not done, the default sidereal mode, i.e. the
Fagan/Bradley ayanamsha, will be used.
There is no extended function for swe_houses_armc(). Therefore, if you want to compute such obscure things
as sidereal composite house cusps, the procedure will be more complicated:

Swiss Ephemeris 31
/* sidereal composite house computation; with true epsilon, but without nutation in longitude */
swe_calc(tjd_et1, SE_ECL_NUT, 0, x1, serr);
swe_calc(tjd_et2, SE_ECL_NUT, 0, x2, serr);
armc1 = swe_sidtime(tjd_ut1) * 15;
armc2 = swe_sidtime(tjd_ut2) * 15;
armc_comp = composite(armc1, armc2); /* this is a function created by the user */
eps_comp = (x1[0] + x2[0]) / 2;
nut_comp = (x1[2] + x2[2]) / 2;
tjd_comp = (tjd_et1 + tjd_et2) / 2;
aya = swe_get_ayanamsa(tjd_comp);
swe_houses_armc(armc_comp, geolat, eps_comp, hsys, cusps, ascmc);
for (i = 1; i <= 12; i++)
 cusp[i] = swe_degnorm(cusp[i] – aya – nut_comp);
for (i = 0; i < 10; i++)
 ascmc[i] = swe_degnorm(asc_mc[i] – aya – nut_comp);

Output and input parameters.
The first array element cusps[0] is always 0, the twelve houses follow in cusps[1] .. [12], the reason being that
arrays in C begin with the index 0. The indices are therefore:

cusps[0] = 0
cusps[1] = house 1
cusps[2] = house 2

etc.

In the array ascmc, the function returns the following values:

ascmc[0] = Ascendant
ascmc[1] = MC
ascmc[2] = ARMC
ascmc[3] = Vertex
ascmc[4] = "equatorial ascendant"
ascmc[5] = "co-ascendant" (Walter Koch)
ascmc[6] = "co-ascendant" (Michael Munkasey)
ascmc[7] = "polar ascendant" (M. Munkasey)

The following defines can be used to find these values:

#define SE_ASC 0
#define SE_MC 1
#define SE_ARMC 2
#define SE_VERTEX 3
#define SE_EQUASC 4 /* "equatorial ascendant" */
#define SE_COASC1 5 /* "co-ascendant" (W. Koch) */
#define SE_COASC2 6 /* "co-ascendant" (M. Munkasey) */
#define SE_POLASC 7 /* "polar ascendant" (M. Munkasey) */
#define SE_NASCMC 8

ascmc must be an array of 10 doubles. ascmc[8... 9] are 0 and may be used for additional points in future
releases.

The following house systems are implemented so far
hsys = ‘P’ Placidus

 ‘K’ Koch
 ‘O’ Porphyrius
 ‘R’ Regiomontanus
 ‘C’ Campanus
 ‘A’ or ‘E’ Equal (cusp 1 is Ascendant)
 ‘V’ Vehlow equal (Asc. in middle of house 1)
 ‘X’ axial rotation system
 ‘H’ azimuthal or horizontal system
 ‘T’ Polich/Page (“topocentric” system)
 ‘B’ Alcabitus
 ‘G’ Gauquelin sectors
 ‘M’ Morinus

Placidus and Koch house cusps cannot be computed beyond the polar circle. In such cases, swe_houses()
switches to Porphyry houses (each quadrant is divided into three equal parts) and returns the error code ERR.

Swiss Ephemeris 32
The Vertex is the point on the ecliptic that is located in precise western direction. The opposition of the Vertex is
the Antivertex, the ecliptic east point.

13. The sign of geographical longitudes in Swisseph functions
There is a disagreement between American and European programmers whether eastern or western
geographical longitudes ought to be considered positive. Americans prefer to have West longitudes positive,
Europeans prefer the older tradition that considers East longitudes as positive and West longitudes as negative.
The Astronomical Almanac still follows the European pattern. It gives the geographical coordinates of
observatories in "East longitude".
The Swiss Ephemeris also follows the European style. All Swiss Ephemeris functions that use geographical
coordinates consider positive geographical longitudes as East and negative ones as West.
E.g. 87w39 = -87.65° (Chicago IL/USA) and 8e33 = +8.55° (Zurich, Switzerland).
There is no such controversy about northern and southern geographical latitudes. North is always positive and
south is negative.

14. Getting the house position of a planet with swe_house_pos()
To compute the house position of a given body for a given ARMC, you may use the

double swe_house_pos(
 double armc, /* ARMC */
 double geolat, /* geographic latitude, in degrees */
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *xpin, /* array of 2 doubles: ecl. longitude and latitude of the planet */
char *serr); /* return area for error or warning message */

The variables armc, geolat, eps, and xpin[0] and xpin[1] (ecliptic longitude and latitude of the planet) must
be in degrees. serr must, as usually, point to a character array of 256 byte.
The function returns a value between 1.0 and 12.999999, indicating in which house a planet is and how far from
its cusp it is.
With house system ‘G’ (Gauquelin sectors), a value between 1.0 and 36.9999999 is returned. Note that, while all
other house systems number house cusps in counterclockwise direction, Gauquelin sectors are numbered in
clockwise direction.

With Koch houses, the function sometimes returns 0, if the computation was not possible. This happens most
often in polar regions, but it can happen at latitudes below 66°33’ as well, e.g. if a body has a high declination
and falls within the circumpolar sky. With circumpolar fixed stars (or asteroids) a Koch house position may be
impossible at any geographic location except on the equator.
The user must decide how to deal with this situation.
You can use the house positions returned by this function for house horoscopes (or ”mundane” positions). For
this, you have to transform it into a value between 0 and 360 degrees. Subtract 1 from the house number and
multiply it with 30, or mund_pos = (hpos – 1) * 30;

You will realize that house positions computed like this, e.g. for the Koch houses, will not agree exactly with the
ones that you get applying the Huber ”hand calculation” method. If you want a better agreement, set the ecliptic
latitude xpin[1]= 0;. Remaining differences result from the fact that Huber’s hand calculation is a simplification,
whereas our computation is geometrically accurate.

This function requires TROPICAL positions in xpin. SIDEREAL house positions are identical to tropical ones in
the following cases:
• If the traditional method is used to compute sidereal planets (sid_pos = trop_pos – ayanamsha). Here the

function swe_house_pos() works for all house systems.
• If a non-traditional method (projection to the ecliptic of t0 or to the solar system rotation plane) is used and

the definition of the house system does not depend on the ecliptic. This is the case with Campanus,
Regiomontanus, Placidus, Azimuth houses, axial rotation houses. This is NOT the case with equal
houses, Porphyry and Koch houses. You have to compute equal and Porphyry house positions on your
own. We recommend to avoid Koch houses here. Sidereal Koch houses make no sense with these sidereal
algorithms.

• Alcabitus is not yet supported in release 1.61.01

Swiss Ephemeris 33
14.1. Calculating the Gauquelin sector position of a planet with

swe_house_pos() or swe_gauquelin_sector()
For general information on Gauquelin sectors, read the chapter in the full documentation file swisseph.doc.

There are three methods of computing the Gauquelin sector position of a planet:
0) sector positions computed from ecliptical longitudes, without ecliptical latitudes:
 call swe_house_pos() with hsys = ‘G’, xpin[0] = ecl. longitude of planet, and xpin[1] = 0
 The function returns the sector position as a value between 1.0 and 36.9999999.

1) sector positions from ecl. longitude AND latitude:
 call swe_house_pos() with hsys = ‘G’, xpin[0] = ecl. longitude of planet, and xpin[1] = ecl. latitude
 The function returns the sector position as a value between 1.0 and 36.9999999.

2) sector positions of a planet from rising and setting times of planets:
 call swe_gauquelin_sector() with imeth=2
 The rising and setting of the disk center of the body is used.
 You can use this function also for methods 0 and 1, but swe_house_pos() may be more efficient,
 because swe_gauquelin_sector() has to recalculate the whole planet whereas swe_house_pos()
 has an input array for ecliptical positions calculated before.

3) sector positions of a planet from rising and setting times of planets, taking into account atmospheric refraction:
 call swe_gauquelin_sector() with imeth = 3

With house system ‘G’ (Gauquelin sectors), a value between 1.0 and 36.9999999 is returned. Note that, while all
other house systems number house cusps in counterclockwise direction, Gauquelin sectors are numbered in
clockwise direction.

For explanation of swe_house_pos(), see chapter about that function above. The function
swe_gauquelin_sector() is declared as follows:

double swe_gauquelin_sector(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet, or moon */
char *starname, /* star name, if star */
int32 iflag, /* flag for ephemeris and SEFLG_TOPOCTR */
int32 imeth, /* method: 0 = with lat., 1 = without lat.,
 /* 2 = from rise/set, 3 = from rise/set with refraction */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure, only useful with imeth=3;
 * if 0, default = 1013.25 mbar is used*/
double attemp, /* atmospheric temperature in degrees Celsius, only useful with imeth=3 */
double *dgsect, /* return address for gauquelin sector position */
char *serr); /* return address for error message */

NOTE: This function returns error (-1) for circumpolar bodies with imeth=2.

15. Sidereal time with swe_sidtime() and swe_sidtime0()
The sidereal time is computed inside the houses() function and returned via the variable armc which
measures sidereal time in degrees. To get sidereal time in hours, divide armc by 15.
If the sidereal time is required separately from house calculation, two functions are available. The second version
requires obliquity and nutation to be given in the function call, the first function computes them internally. Both
return sidereal time at the Greenwich Meridian, measured in hours.

double swe_sidtime(double tjd_ut); /* Julian day number, UT */
double swe_sidtime0(
 double tjd_ut, /* Julian day number, UT */
 double eps, /* obliquity of ecliptic, in degrees */
 double nut); /* nutation, in degrees */

Swiss Ephemeris 34

16. Summary of SWISSEPH functions

16.1. Calculation of planets and stars

Planets, moon, asteroids, lunar nodes, apogees, fictitious bodies

long swe_calc_ut(
 double tjd_ut, /* Julian day number, Universal Time */
 int ipl, /* planet number */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

long swe_calc(
 double tjd_et, /* Julian day number, Ephemeris Time */
 int ipl, /* planet number */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

Fixed stars
long swe_fixstar_ut(
 char *star, /* star name, returned star name 40 bytes */
 double tjd_ut, /* Julian day number, Universal Time */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

long swe_fixstar(
 char *star, /* star name, returned star name 40 bytes */
 double tjd_et, /* Julian day number, Ephemeris Time */
 long iflag, /* flag bits */
 double *xx, /* target address for 6 position values: longitude, latitude, distance,
 long. speed, lat. speed, dist. speed */
 char *serr); /* 256 bytes for error string */

Set the geographic location for topocentric planet computation
void swe_set_topo (
 double geolon, /* geographic longitude */
 double geolat, /* geographic latitude
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 double altitude); /* altitude above sea */

Set the sidereal mode for sidereal planet positions
void swe_set_sid_mode (
 int32 sid_mode,
 double t0, /* reference epoch */
 double ayan_t0); /* initial ayanamsha at t0 */

/* to get the ayanamsha for a date */
double swe_get_ayanamsa(double tjd_et);

Swiss Ephemeris 35
16.2 Eclipses and planetary phenomena

Find the next eclipse for a given geographic position
int32 swe_sol_eclipse_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height */
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next eclipse globally
int32 swe_sol_eclipse_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Compute the attributes of a solar eclipse for a given tjd, geographic long., latit. and height
int32 swe_sol_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* geogr. longitude, latitude, height */
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

Find out the geographic position where a central eclipse is central or a non-central one maximal
int32 swe_sol_eclipse_where (
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat. */
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

or

int32 swe_lun_occult_where (
double tjd_ut, /* time, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* return array, 2 doubles, geo. long. and lat.
 * eastern longitude is positive,
 * western longitude is negative,
 * northern latitude is positive,
 * southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

Swiss Ephemeris 36
Find the next occultation of a body by the moon for a given geographic position

(can also be used for solar eclipses)

int32 swe_lun_occult_when_loc(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next occultation globally
(can also be used for solar eclipses)

int32 swe_lun_occult_when_glob(
double tjd_start, /* start date for search, Jul. day UT */
int32 ipl, /* planet number */
char* starname, /* star name, must be NULL or ”” if not a star */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted */
double *geopos, /* 3 doubles for geo. lon, lat, height eastern longitude is positive,
 western longitude is negative, northern latitude is positive,
 southern latitude is negative */
double *tret, /* return array, 10 doubles, see below */
double *attr, /* return array, 20 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Find the next lunar eclipse
int32 swe_lun_eclipse_when(
double tjd_start, /* start date for search, Jul. day UT */
int32 ifl, /* ephemeris flag */
int32 ifltype, /* eclipse type wanted: SE_ECL_TOTAL etc. */
double *tret, /* return array, 10 doubles, see below */
AS_BOOL backward, /* TRUE, if backward search */
char *serr); /* return error string */

Compute the attributes of a lunar eclipse at a given time
int32 swe_lun_eclipse_how(
double tjd_ut, /* time, Jul. day UT */
int32 ifl, /* ephemeris flag */
double *geopos, /* input array, geopos, geolon, geoheight */
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

int32 swe_rise_trans(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet or moon */
char *starname, /* star name, if star */
int32 epheflag, /* ephemeris flag */
int32 rsmi, /* integer specifying that rise, set, or one of the two meridian transits is
 wanted. see definition below */
double *geopos, /* array of three doubles containing geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure in mbar/hPa */
double attemp, /* atmospheric temperature in deg. C */
double *tret, /* return address (double) for rise time etc. */

Swiss Ephemeris 37
char *serr); /* return address for error message */

Compute planetary phenomena
int32 swe_pheno_ut(
double tjd_ut, /* time Jul. Day UT */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */
int32 swe_pheno(
double tjd_et, /* time Jul. Day ET */
int32 ipl, /* planet number */
int32 iflag, /* ephemeris flag */
double *attr, /* return array, 20 doubles, see below */
char *serr); /* return error string */

void swe_azalt(
 double tjd_ut, /* UT */
 int32 calc_flag, /* SE_ECL2HOR or SE_EQU2HOR */
 double *geopos, /* array of 3 doubles: geogr. long., lat., height */
 double atpress, /* atmospheric pressure in mbar (hPa) */
 double attemp, /* atmospheric temperature in degrees Celsius */
 double *xin, /* array of 3 doubles: position of body in either ecliptical or equatorial

coordinates, depending on calc_flag */
 double *xaz); /* return array of 3 doubles, containing azimuth, true altitude, apparent

altitude */

void swe_azalt_rev(
 double tjd_ut,
 int32 calc_flag, /* either SE_HOR2ECL or SE_HOR2EQU */
 double *geopos, /* array of 3 doubles for geograph. pos. of observer */
 double *xin, /* array of 2 doubles for azimuth and true altitude of planet */
 double *xout); /* return array of 2 doubles for either ecliptic or equatorial coordinates,

depending on calc_flag */
double swe_refrac(
double inalt,
double atpress, /* atmospheric pressure in mbar (hPa) */
double attemp, /* atmospheric temperature in degrees Celsius */
int32 calc_flag); /* either SE_TRUE_TO_APP or SE_APP_TO_TRUE */

16.3. Date and time conversion

Delta T from Julian day number
 * Ephemeris time (ET) = Universal time (UT) + swe_deltat(UT)*/
double swe_deltat(double tjd);

Julian day number from year, month, day, hour, with check whether date is legal
/*Return value: OK or ERR */
int swe_date_conversion (
 int y , int m , int d , /* year, month, day */
 double hour, /* hours (decimal, with fraction) */
 char c, /* calendar ‘g’[regorian]|’j’[ulian] */
double *tjd); /* target address for Julian day */

Julian day number from year, month, day, hour
double swe_julday(
int year, int month, int day, double hour,
int gregflag); /* Gregorian calendar: 1, Julian calendar: 0 */

Year, month, day, hour from Julian day number
void swe_revjul (
 double tjd, /* Julian day number */
 int gregflag, /* Gregorian calendar: 1, Julian calendar: 0 */

Swiss Ephemeris 38
int *year, /* target addresses for year, etc. */
int *month, int *day, double *hour);

Get tidal acceleration used in swe_deltat()
double swe_get_tid_acc(void);

Set tidal acceleration to be used in swe_deltat()
void swe_set_tid_acc(double t_acc);

Equation of time
/ * function returns the difference between local apparent and local mean time.
e = LAT – LMT. tjd_et is ephemeris time */
int swe_time_equ(double tjd_et, double *e, char *serr);

16.4. Initialization, setup, and closing functions

Set directory path of ephemeris files
int swe_set_ephe_path(char *path);

/* set name of JPL ephemeris file */
int swe_set_jpl_file(char *fname);

/* close Swiss Ephemeris */
void swe_close(void);

Swiss Ephemeris 39

16.5. House calculation

Sidereal time
double swe_sidtime(double tjd_ut); /* Julian day number, UT */

double swe_sidtime0(
 double tjd_ut, /* Julian day number, UT */
 double eps, /* obliquity of ecliptic, in degrees */
 double nut); /* nutation, in degrees */

House cusps, ascendant and MC
int swe_houses(
 double tjd_ut, /* Julian day number, UT */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 int hsys, /* house method, one of the letters PKRCAV */
 double* cusps, /* array for 13 doubles */
 double* ascmc); /* array for 10 doubles */

Extended house function; to compute tropical or sidereal positions
int swe_houses_ex(
 double tjd_ut, /* Julian day number, UT */
 int32 iflag, /* 0 or SEFLG_SIDEREAL or SEFLG_RADIANS */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 int hsys, /* house method, one of the letters PKRCAV */
 double* cusps, /* array for 13 doubles */
 double* ascmc); /* array for 10 doubles */

int swe_houses_armc(
 double armc, /* ARMC */
 double geolat, /* geographic latitude, in degrees */
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *cusps, /* array for 13 doubles */
 double *ascmc); /* array for 10 doubles */

Get the house position of a celestial point
double swe_house_pos (
 double armc, /* ARMC */
 double geolat, /* geographic latitude, in degrees
 eastern longitude is positive,
 western longitude is negative,
 northern latitude is positive,
 southern latitude is negative */
 double eps, /* ecliptic obliquity, in degrees */
 int hsys, /* house method, one of the letters PKRCAV */
 double *xpin, /* array of 2 doubles: ecl. longitude and latitude of the planet */
 char *serr); /* return area for error or warning message */

Swiss Ephemeris 40

Get the Gauquelin sector position for a body

double swe_gauquelin_sector(
double tjd_ut, /* search after this time (UT) */
int32 ipl, /* planet number, if planet, or moon */
char *starname, /* star name, if star */
int32 iflag, /* flag for ephemeris and SEFLG_TOPOCTR */
int32 imeth, /* method: 0 = with lat., 1 = without lat.,
 /* 2 = from rise/set, 3 = from rise/set with refraction */
double *geopos, /* array of three doubles containing
 * geograph. long., lat., height of observer */
double atpress, /* atmospheric pressure, only useful with imeth=3;
 * if 0, default = 1013.25 mbar is used*/
double attemp, /* atmospheric temperature in degrees Celsius, only useful with imeth=3 */
double *dgsect, /* return address for gauquelin sector position */
char *serr); /* return address for error message */

Swiss Ephemeris 41

16.6. Auxiliary functions

Coordinate transformation, from ecliptic to equator or vice-versa
equator -> ecliptic : eps must be positive
ecliptic -> equator : eps must be negative eps, longitude and latitude are in degrees! */

void swe_cotrans(
double *xpo, /* 3 doubles: long., lat., dist. to be converted; distance remains unchanged,

can be set to 1.00 */
 double *xpn, /* 3 doubles: long., lat., dist. Result of the conversion */
 double eps); /* obliquity of ecliptic, in degrees. */

Coordinate transformation of position and speed, from ecliptic to equator or vice-versa
/ * equator -> ecliptic : eps must be positive
 ecliptic -> equator : eps must be negative
 eps, long., lat., and speeds in long. and lat. are in degrees! */
void swe_cotrans_sp(
 double *xpo, /* 6 doubles, input: long., lat., dist. and speeds in long., lat and dist. */
 double *xpn, /* 6 doubles, position and speed in new coordinate system */
 double eps); /* obliquity of ecliptic, in degrees. */

Get the name of a planet
char* swe_get_planet_name(
int ipl, /* planet number */
char* plan_name); /* address for planet name, at least 20 char */

/* normalization of any degree number to the range 0 ... 360 */
double swe_degnorm(double x);

16.7. Other functions that may be useful
PLACALC, the predecessor of SWISSEPH, had included several functions that we do not need for

SWISSEPH anymore. Nevertheless we include them again in our DLL, because some users of our software may
have taken them over and use them in their applications. However, we gave them new names that were more
consistent with SWISSEPH.

PLACALC used angular measurements in centiseconds a lot; a centisecond is 1/100 of an arc second.
The C type CSEC or centisec is a 32-bit integer. CSEC was used because calculation with integer variables was
considerably faster than floating point calculation on most CPUs in 1988, when PLACALC was written.
In the Swiss Ephemeris we have dropped the use of centiseconds and use double (64-bit floating point) for all
angular measurements.

Normalize argument into interval [0..DEG360]
/ * former function name: csnorm() */
extern EXP32 centisec FAR PASCAL_CONV EXP16 swe_csnorm(centisec p);

Distance in centisecs p1 - p2 normalized to [0..360]
/ * former function name: difcsn() */
extern EXP32 centisec FAR PASCAL_CONV EXP16 swe_difcsn(centisec p1, centisec p2);

Distance in degrees
/* former function name: difdegn() */
extern EXP32 double FAR PASCAL_CONV EXP16 swe_difdegn (double p1, double p2);

Distance in centisecs p1 - p2 normalized to [-180..180]
/* former function name: difcs2n() */
extern EXP32 centisec FAR PASCAL_CONV EXP16 swe_difcs2n(centisec p1, centisec p2);

Swiss Ephemeris 42

Distance in degrees
/* former function name: difdeg2n() */
extern EXP32 double FAR PASCAL_CONV EXP16 swe_difdeg2n(double p1, double p2);

Round second, but at 29.5959 always down
 /* former function name: roundsec() */
extern EXP32 centisec FAR PASCAL_CONV EXP16 swe_csroundsec(centisec x);

Double to long with rounding, no overflow check
/* former function name: d2l() */
extern EXP32 long FAR PASCAL_CONV EXP16 swe_d2l(double x);

Day of week
/*Monday = 0, ... Sunday = 6 former function name: day_of_week() */
extern EXP32 int FAR PASCAL_CONV EXP16 swe_day_of_week(double jd);

Centiseconds -> time string
/* former function name: TimeString() */
extern EXP32 char *FAR PASCAL_CONV EXP16 swe_cs2timestr(CSEC t, int sep, AS_BOOL

suppressZero, char *a);

Centiseconds -> longitude or latitude string
/* former function name: LonLatString() */
extern EXP32 char *FAR PASCAL_CONV EXP16 swe_cs2lonlatstr(CSEC t, char pchar, char mchar,

char *s);

Centiseconds -> degrees string
/* former function name: DegreeString() */
extern EXP32 char *FAR PASCAL_CONV EXP16 swe_cs2degstr(CSEC t, char *a);

17. The SWISSEPH DLLs
There is a 32 bit DLL: swedll32.dll

You can use our programs swetest.c and swewin.c as examples.To compile swetest or swewin with a DLL:

1. The compiler needs the following files:
swetest.c or swewin.c
swedll32.dll
swedll32.lib (if you choose implicit linking)
swephexp.h
swedll.h
sweodef.h

2. Define the following macros (-d):

USE_DLL
3. Build swetest.exe from swetest.c and swedll32.lib.
 Build swewin.exe from swewin.c, swewin.rc, and swedll32.lib

We provide some project files which we have used to build our test samples. You will need to adjust the project
files to your environment.

We have worked with Microsoft Visual C++ 5.0 (32-bit). The DLLs where built with the Microsoft compilers.

17.1 DLL Interface for brain damaged compilers
If you work with GFA-Basic or some other brain damaged language, the problem will occur that the DLL
interface does not support 8-bit, 32-bit, double by value and VOID data or function types. Therefore, we have
written a set of modified functions that use double pointers instead of doubles, character pointers instead of

Swiss Ephemeris 43
characters, and integers instead of void. The names of these modified functions are the same as the names of
their prototypes, except that they end with ”_d”, e.g. swe_calc_d() instead of swe_calc().The export definitions
of these functions can be found in file swedll.h. We do not repeat them here to avoid confusion with the ordinary
functions described in the preceding chapters. The additional functions are only wrapper functions, i.e. they call
internally the real DLL functions and return the same results.

18. Using the DLL with Visual Basic 5.0

The 32-bit DLL contains the exported function under 'decorated names'. Each function has an underscore before
its name, and a suffix of the form @xx where xx is the number of stack bytes used by the call.

The Visual Basic declarations for the DLL functions and for some important flag parameters are in the file
\sweph\vb\swedecl.txt and can be inserted directly into a VB program.

A sample VB program vbsweph is included on the CDROM, in directory \sweph\vb. To run this sample, the
DLL file swedll32.dll must be copied into the vb directory or installed in the Windows system directory.

DLL functions returning a string:
Some DLL functions return a string, e.g.

char* swe_get_planet_name(int ipl, char *plname)

This function copies its result into the string pointer plname; the calling program must provide sufficient space so
that the result string fits into it. As usual in C programming, the function copies the return string into the provided
area and returns the pointer to this area as the function value. This allows to use this function directly in a C print
statement.

In VB there are three problems with this type of function:

1. The string parameter plname must be initialized to a string of sufficient length before the call; the content

does not matter because it is overwritten by the called function. The parameter type must be
ByVal plname as String.

2. The returned string is terminated by a NULL character. This must be searched in VB and the VB string
length must be set accordingly. Our sample program demonstrates how this can be done:

Private Function set_strlen(c$) As String
 i = InStr(c$, Chr$(0))
 c$ = Left(c$, i - 1)
 set_strlen = c$
End Function
plname = String(20,0) ‘ initialize string to length 20
swe_get_planet_name(SE_SUN, plname)
plname = set_strlen(plname)

3. The function value itself is a pointer to character. This function value cannot be used in VB because VB does
not have a pointer data type. In VB, such a Function can be either declared as type ”As long” and the return
value ignored, or it can be declared as a Sub. We have chosen to declare all such functions as ‚Sub‘, which
automatically ignores the return value.
Declare Sub swe_get_planet_name (ByVal ipl as Long, ByVal plname as String)

19. Using the DLL with Borland Delphi and C++ Builder

19.1 Delphi 2.0 and higher (32-bit)

The information in this section was contributed by Markus Fabian, Bern, Switzerland.

In Delphi 2.0 the declaration of the function swe_calc() looks like this:

xx : Array[0..5] of double;
function swe_calc (tjd : double; // Julian day number
 ipl : Integer; // planet number

Swiss Ephemeris 44
 iflag : Longint; // flag bits
 var xx[0] : double;
 sErr : PChar // Error-String;
) : Longint; stdcall; far; external 'swedll32.dll' Name '_swe_calc@24';

A nearly complete set of declarations is in file \sweph\delphi2\swe_d32.pas.
A small sample project for Delphi 2.0 is also included in the same directory (starting with release 1.25 from June
1998). This sample requires the DLL to exist in the same directory as the sample.

19.2 Borland C++ Builder
Borland C++ Builder (BCB) does not understand the Microsoft format in the library file SWEDLL32.LIB; it
reports an OMF error when this file is used in a BCB project. The user must create his/her own LIB file for BCB
with the utility IMPLIB which is part of BCB.

With the following command command you create a special lib file in the current directory:

IMPLIB –f –c swe32bor.lib \sweph\bin\swedll32.dll

In the C++ Builder project the following settings must be made:

• Menu Options->Projects->Directories/Conditionals: add the conditional define USE_DLL
• Menu Project->Add_to_project: add the library file swe32bor.lib to your project.
• In the project source, add the include file "swephexp.h"

In the header file swedll.h the declaration for Dllimport must be

#define DllImport extern "C" __declspec(dllimport)
This is provided automatically by the __cplusplus switch for release 1.24 and higher. For earlier releases the
change must be made manually.

20. The C sample program

The distribution CDROM contains executables and C source code of sample programs which demonstrate the
use of the Swiss Ephemeris DLL and its functions.

All samples programs are compiled with the Microsoft Visual C++ 5.0 compiler (32-bit). Project and Workspace
files for these environments are included with the source files.

Directory structure:
Sweph\bin DLL, LIB and EXE file
Sweph\src source files, resource files
Sweph\src\swewin32 32-bit windows sample program
Sweph\src\swete32 32-bit character mode sample program

You can run the samples in the following environments:
Swetest.exe in Windows command line
Swete32.exe in Windows command line
Swewin32.exe in Windows

Character mode executable that needs a DLL
Swete32.exe
The project files are in \sweph\src\swete32
swetest.c
swedll32.lib
swephexp.h
swedll.h
sweodef.h
define macros: USE_DLL DOS32 DOS_DEGREE

swewin32.exe
The project files are in \sweph\src\swewin32

Swiss Ephemeris 45
swewin.c
swedll32.lib
swewin.rc
swewin.h
swephexp.h
swedll.h
sweodef.h
resource.h
define macro USE_DLL

How the sample programs search for the ephemeris files:

1. check environment variable SE_EPHE_PATH; if it exists it is used, and if it has invalid content, the program

fails.
2. Try to find the ephemeris files in the current working directory
3. Try to find the ephemeris files in the directory where the executable resides
4. Try to find a directory named \SWEPH\EPHE in one of the following three drives:

• where the executable resides
• current drive
• drive C:

As soon as it succeeds in finding the first ephemeris file it looks for, it expects all required ephemeris files to
reside there. This is a feature of the sample programs only, as you can see in our C code.

The DLL itself has a different and simpler mechanism to search for ephemeris files, which is described with the
function swe_set_ephe_path() above.

21. The source code distribution
Starting with release 1.26, the full source code for the Swiss Ephemeris DLL is made available. Users can
choose to link the Swiss Ephemeris code directly into their applications. The source code is written in Ansi C and
consists of these files:

Bytes Date File name Comment
1639 Nov 28 17:09 Makefile unix makefile for library
API interface files

15050 Nov 27 10:56 swephexp.h SwissEph API include file
14803 Nov 27 10:59 swepcalc.h Placalc API include file

Internal files
8518 Nov 27 10:06 swedate.c
2673 Nov 27 10:03 swedate.h
8808 Nov 28 19:24 swedll.h

24634 Nov 27 10:07 swehouse.c
2659 Nov 27 10:05 swehouse.h

31279 Nov 27 10:07 swejpl.c
3444 Nov 27 10:05 swejpl.h

38238 Nov 27 10:07 swemmoon.c
2772 Nov 27 10:05 swemosh.h

18687 Nov 27 10:07 swemplan.c
311564 Nov 27 10:07 swemptab.c

7291 Nov 27 10:06 sweodef.h
28680 Nov 27 10:07 swepcalc.c

173758 Nov 27 10:07 sweph.c
12136 Nov 27 10:06 sweph.h
55063 Nov 27 10:07 swephlib.c

4886 Nov 27 10:06 swephlib.h
43421 Nov 28 19:33 swetest.c

Swiss Ephemeris 46
In most cases the user will compile a linkable or shared library from the source code, using his favorite C
compiler, and then link this library with his application.
If the user programs in C, he will only need to include the header file swephexp.h with his application; this in turn
will include sweodef.h. All other source files can ignored from the perspective of application development.

22. The PLACALC compatibility API
To simplify porting of older Placalc applications to the Swiss Ephemeris API, we have created the Placalc
compatibility API which consists of the header file swepcalc.h. This header file replaces the headers ourdef.h,
placalc.h, housasp.h and astrolib.h in Placalc applications.You should be able to link your Placalc aplication
now with the Swiss Ephemeris library. The Placalc API is not contained in the SwissEph DLL.
All new software should use the SwissEph API directly.

23. Documentation files

The following files are in the directory \sweph\doc

sweph.cdr
sweph.gif
swephin.cdr
swephin.gif
swephprg.doc Documentation for programming, a MS Word-97 file
swephprg.rtf
swisseph.doc General information on Swiss Ephemeris
swisseph.rtf

The files with suffix .CDR are Corel Draw 7.0 documents with the Swiss Ephemeris icons.

24. Swisseph with different hardware and compilers
Depending on what hardware and compiler you use, there will be slight differences in your planetary calculations.
For positions in longitude, they will be never larger than 0.0001" in longitude. Speeds show no difference larger
than 0.0002 arcsec/day.

The following factors show larger differences between HPUX and Linux on a Pentium II processor:
Mean Node, Mean Apogee:
HPUX PA-Risc non-optimized versus optimized code:
 differences are smaller than 0.001 arcsec/day

HPUX PA-Risc versus Intel Pentium gcc non-optimzed
 differences are smaller than 0.001 arcsec/day

Intel Pentium gss non-optimzed versus -O9 optimized:
Mean Node, True node, Mean Apogee: difference smaller than 0.001 arcsec/day
Osculating Apogee: differences smaller than 0.03 arcsec

The differences originate from the fact that the floating point arithmetic in the Pentium is executed with 80 bit
precision, whereas stored program variables have only 64 bit precision. When code is optimized, more
intermediate results are kept inside the processor registers, i.e. they are not shortened from 80bit to 64 bit. When
these results are used for the next calculation, the outcome is then slightly different.
In the computation of speed for the nodes and apogee, differences between positions at close intervals are
involved; the subtraction of nearly equal values results shows differences in internal precision more easily than
other types of calculations. As these differences have no effect on any imaginable application software and are
mostly within the design limit of Swiss Ephemeris, they can be savely ignored.

25. Debugging and Tracing Swisseph

25.1. If you are using the DLL
Besides the ordinary Swisseph function, there are two additional DLLs that allow you tracing your Swisseph
function calls:

Swiss Ephemeris 47
Swetrs32.dll is for single task debugging, i.e. if only one application at a time calls Swisseph functions.

Two output files are written:
a) swetrace.txt: reports all Swisseph functions that are being called.
b) swetrace.c: contains C code equivalent to the Swisseph calls that your application did.
The last bracket of the function main() at the end of the file is missing.
If you want to compile the code, you have to add it manually. Note that these files may grow very fast,
depending on what you are doing in your application. The output is limited to 10000 function calls per run.

Swetrm32.dll is for multitasking, i.e. if more than one application at a time are calling Swisseph functions. If you
used the single task DLL here, all applications would try to write their trace output into the same file.
Swetrm32.dll generates output file names that contain the process identification number of the application
by which the DLL is called, e.g. swetrace_192.c and swetrace_192.txt.
Keep in mind that every process creates its own output files and with time might fill your disk.

In order to use a trace DLL, you have to replace your Swisseph DLL by it:
a) save your Swisseph DLL
b) rename the trace DLL as your Swisseph DLL (e.g. as swedll32.dll)

IMPORTANT: The Swisseph DLL will not work properly if you call it from more than one thread.

Output samples swetrace.txt:

swe_deltat: 2451337.870000 0.000757
swe_set_ephe_path: path_in = path_set = \sweph\ephe\
swe_calc: 2451337.870757 -1 258 23.437404 23.439365 -0.003530 -0.001961 0.000000 0.000000
swe_deltat: 2451337.870000 0.000757
swe_sidtime0: 2451337.870000 sidt = 1.966683 eps = 23.437404 nut = -0.003530
swe_sidtime: 2451337.870000 1.966683
swe_calc: 2451337.870757 0 258 77.142261 -0.000071 1.014989 0.956743 -0.000022 0.000132
swe_get_planet_name: 0 Sun

swetrace.c:

#include "sweodef.h"
#include "swephexp.h"

void main()
{
 double tjd, t, nut, eps; int i, ipl, retc; long iflag;
 double armc, geolat, cusp[12], ascmc[10]; int hsys;
 double xx[6]; long iflgret;
 char s[AS_MAXCH], star[AS_MAXCH], serr[AS_MAXCH];

/*SWE_DELTAT*/
 tjd = 2451337.870000000; t = swe_deltat(tjd);
 printf("swe_deltat: %f\t%f\t\n", tjd, t);

/*SWE_CALC*/
 tjd = 2451337.870757482; ipl = 0; iflag = 258;
 iflgret = swe_calc(tjd, ipl, iflag, xx, serr); /* xx = 1239992 */

/*SWE_CLOSE*/
 swe_close();

25.2 If you are using the source code
Similar tracing is also possible if you compile the Swisseph source code into your application. Use the
preprocessor definitions TRACE=1 for single task debugging, and TRACE=2 for multitasking. In most compilers
this flag can be set with –DTRACE=1 or /DTRACE=1.
For further explanations, see 21.1.

Swiss Ephemeris 48
Appendix

Update and release history
Updated By

30-sep-97 Alois added chapter 10 (sample programs)
7-oct-97 Dieter inserted chapter 7 (house calculation)
8-oct-97 Dieter Appendix ”Changes from version 1.00 to 1.01”

12-oct-1997 Alois Added new chapter 10 Using the DLL with Visual Basic
26-oct-1997 Alois improved implementation and documentation of swe_fixstar()
28-oct-1997 Dieter Changes from Version 1.02 to 1.03
29-oct-1997 Alois added VB sample extension, fixed VB declaration errors
9-Nov-1997 Alois added Delphi declaration sample

8-Dec-97 Dieter remarks concerning computation of asteroids, changes to version 1.04
8-Jan-98 Dieter changes from version 1.04 to 1.10.

12-Jan-98 Dieter changes from version 1.10 to 1.11.
21-Jan-98 Dieter calculation of topocentric planets and house positions (1.20)
28-Jan-98 Dieter Delphi 1.0 sample and declarations for 16- and 32-bit Delphi (1.21)
11-Feb-98 Dieter version 1.23

7-Mar-1998 Alois version 1.24 support for Borland C++ Builder added
4-June-1998 Alois version 1.25 sample for Borland Delphi-2 added
29-Nov-1998 Alois version 1.26 source code information added §16, Placalc API added
1-Dec-1998 Dieter chapter 19 and some additions in beginning of Appendix.
2-Dec-1998 Alois Equation of Time explained (in §4), changes version 1.27 explained
3-Dec-1998 Dieter Note on ephemerides of 1992 QB1 and 1996 TL66

17-Dec-1998 Alois Note on extended time range of 10'800 years
22 Dec 1998 Alois Appendix A
12-Jan-1999 Dieter Eclipse functions added, version 1.31

19-Apr-99 Dieter version 1.4
8-Jun-99 Dieter Chapter 21 on tracing an debugging Swisseph
27-Jul-99 Dieter Info about sidereal calculations

16-Aug-99 Dieter version 1.51, minor bug fixes
15-Feb-00 Dieter many things for version 1.60
19-Mar-00 Vic Ogi SWEPHPRG.DOC re-edited
17-apr-02 Dieter Documentation for version 1.64
26-Jun-02 Dieter Version 1.64.01

31-dec-2002 Alois edited doc to remove references to 16-bit version
12-jun-2003 Alois/Dieter Documentation for version 1.65
10-Jul-2003 Dieter Documentation for version 1.66

Release Date
1.00 30-sep-1997
1.01 9-oct-1997 houses(), sidtime() made more convenient for developer, Vertex added.

1.02 16-oct-1997 houses() changed again, Visual Basic support, new numbers for fictitious planets
This release was pushed to all existing licensees at this date.

1.03 28-Oct-1997
minor bug fixes, improved swe_fixstar() functionality. This release was not pushed,
as the changes and bug fixes are minor; no changes of function definitions
occurred.

1.04 8-Dec-1997 minor bug fixes; more asteroids.
1.10 9-Jan-1998 bug fix, s. Appendix. This release was pushed to all existing licensees at this date.
1.11 12-Jan-98 small improvements
1.20 20-Jan-98 New: topocentric planets and house positions; a minor bug fix
1.21 28-Jan-98 Delphi declarations and sample for Delphi 1.0
1.22 2-Feb-98 Asteroids moved to subdirectory. Swe_calc() finds them there.
1.23 11-Feb-98 two minor bug fixes.
1.24 7-Mar-1998 Documentation for Borland C++ Builder added, see section 14.3
1.25 4-June-1998 Sample for Borland Delphi-2 added
1.26 29-Nov-1998 full source code made available, Placalc API documented
1.27 2-dec-1998 Changes to SE_EPHE_PATH and swe_set_ephe_path()
1.30 17-Dec-1998 Time range extended to 10'800 years
1.31 12-Jan-1999 New: Eclipse functions added
1.40 19-Apr-99 New: planetary phenomena added; bug fix in swe_sol_ecl_when_glob();
1.50 27-Jul-99 New: SIDEREAL planetary positions and houses; new fixstars.cat

Swiss Ephemeris 49
1.51 16-Aug-99 Minor bug fixes
1.60 15-Feb-2000 Major release with many new features and some minor bug fixes
1.61 11-Sep-2000 Minor release, additions to se_rise_trans(), swe_houses(), ficitious planets
1.61.01 18-Sep-2000 Minor release, added Alcabitus house system
1.61.02 10-Jul-2001 Minor release, fixed bug which prevented asteroid files > 22767 to be accepted
1.61.03 20-Jul-2001 Minor release, fixed bug which was introduced in 1.61.02: Ecliptic was computed in

Radians instead of degrees
1.62.00 23-Jul-2001 Minor release, several bug fixes, code for fictitious satellites of the earth, asteroid

files > 55535 are accepted
1.62.01 16-Oct-2001 Bug fix, string overflow in sweph.c::read_const(),
1.63.00 5-Jan-2002 Added house calculation to sweetest.c and swetest.exe

1.64.00 6-Mar-2002
House system ‘G’ for house functions and function swe_gauquelin_sector() for
Gauquelin sector calculations
Occultations of planets and fixed stars by the moon

1.64.01 26-Jun-2002 Bug fix in swe_fixstar(). Stars with decl. between –1° and 0° were wrong
1.65.00 12-Jun-2003 Long variables replaced by INT32 for 64-bit compilers
1.66.00 10-Jul-2003 House system ‘M’ for Morinus houses

Changes from version 1.65 to version 1.66

New features:
House system according to Morinus (system ‘M’).

Changes from version 1.64.01 to version 1.65.00

‘long’ variables were changed to ‘INT32’ for 64-bit compilers.

Changes from version 1.64 to version 1.64.01

- Bug fixed in swe_fixstar(). Declinations between –1° and 0° were wrongly taken as positive.
Thanks to John Smith, Serbia, who found this bug.
- Several minor bug fixes and cosmetic code improvements suggested by Thomas Mack, Germany.
 swetest.c: options –po and –pn work now.
 Sweph.c: speed of mean node and mean lunar apogee were wrong in rare cases, near 0 Aries.

Changes from version 1.63 to version 1.64

New features:
1) Gauquelin sectors:
- swe_houses() etc. can be called with house system character ‘G’ to calculate Gauquelin sector boundaries.
- swe_house_pos() can be called with house system ‘G’ to calculate sector positions of planets.
- swe_gauquelin_sector() is new and calculates Gauquelin sector positions with three methods: without ecl.
latitude, with ecl. latitude, from rising and setting.

2) Waldemath Black Moon elements have been added in seorbel.txt (with thanks to Graham Dawson).

3) Occultations of the planets and fixed stars by the moon
- swe_lun_occult_when_loc() calculates occultations for a given geographic location
- swe_lun_occult_when_glob() calculates occultations globally

4) Minor bug fixes in swe_fixstar() (Cartesian coordinates), solar eclipse functions, swe_rise_trans()

5) sweclips.c integrated into swetest.c. Swetest now also calculates eclipses, occultations, risings and settings.

Changes from version 1.62 to version 1.63

New features:

Swiss Ephemeris 50
The option –house was added to swetest.c so that swetest.exe can now be used to compute complete
horoscopes in textual mode.
Bux fix: a minor bug in function swe_co_trans was fixed. It never had an effect.

Changes from version 1.61.03 to version 1.62

New features:
1) Elements for hypothetical bodies that move around the earth (e.g. Selena/White Moon) can be added to the
file seorbel.txt.
2) The software will be able to read asteroid files > 55535.

Bug fixes:
1) error in geocentric planetary descending nodes fixed
2) swe_calc() now allows hypothetical planets beyond SE_FICT_OFFSET + 15
3) position of hypothetical planets slightly corrected (< 0.01 arc second)

Changes from version 1.61 to 1.61.01

New features:
1. swe_houses and swe_houses_armc now supports the Alcabitus house system. The function
swe_house_pos() does not yet, because we wanted to release quickly on user request.

Changes from version 1.60 to 1.61

New features:
1. Function swe_rise_trans(): Risings and settings also for disc center and without refraction
2. “topocentric” house system added to swe_houses() and other house-related functions
3. Hypothetical planets (seorbel.txt), orbital elements with t terms are possible now (e.g. for Vulcan according to
L.H. Weston)

Changes from version 1.51 to 1.60

New features:
1. Universal time functions swe_calc_ut(), swe_fixstar_ut(), etc.
2. Planetary nodes, perihelia, aphelia, focal points
3. Risings, settings, and meridian transits of the Moon, planets, asteroids, and stars.
4. Horizontal coordinates (azimuth and altitude)
5. Refraction
6. User-definable orbital elements
7. Asteroid names can be updated by user
8. Hitherto missing "Personal Sensitive Points" according to M. Munkasey.

Minor bug fixes:
• Astrometric lunar positions (not relevant for astrology; swe_calc(tjd, SE_MOON, SEFLG_NOABERR))

had a maximum error of about 20 arc sec).
• Topocentric lunar positions (not relevant for common astrology): the ellipsoid shape of the earth was not

correctly implemented. This resulted in an error of 2 - 3 arc seconds. The new precision is 0.2 - 0.3 arc
seconds, corresponding to about 500 m in geographic location. This is also the precision that Nasa's Horizon
system provides for the topocentric moon. The planets are much better, of course.

• Solar eclipse functions: The correction of the topocentric moon and another small bug fix lead to slightly
different results of the solar eclipse functions. The improvement is within a few time seconds.

Changes from version 1.50 to 1.51
Minor bug fixes:
• J2000 coordinates for the lunar node and osculating apogee corrected. This bug did not affect ordinary

computations like ecliptical or equatorial positions.
• minor bugs in swetest.c corrected
• sweclips.exe recompiled
• trace DLLs recompiled

Swiss Ephemeris 51
• some VB5 declarations corrected

Changes from version 1.40 to 1.50
New: SIDEREAL planetary and house position.
• The fixed star file fixstars.cat has been improved and enlarged by Valentin Abramov, Tartu, Estonia.
• Stars have been ordered by constellation. Many names and alternative spellings have been added.
• Minor bug fix in solar eclipse functions, sometimes relevant in border-line cases annular/total, partial/total.
• J2000 coordinates for the lunar nodes were redefined: In versions before 1.50, the J2000 lunar nodes were

the intersection points of the lunar orbit with the ecliptic of 2000. From 1.50 on, they are defined as the
intersection points with the ecliptic of date, referred to the coordinate system of the ecliptic of J2000.

Changes from version 1.31 to 1.40
New: Function for several planetary phenomena added
Bug fix in swe_sol_ecl_when_glob(). The time for maximum eclipse at local apparent noon (tret[1]) was
sometimes wrong. When called from VB5, the program crashed.

Changes from version 1.30 to 1.31
New: Eclipse functions added.
Minor bug fix: with previous versions, the function swe_get_planet_name() got the name wrong, if it was an
asteroid name and consisted of two or more words (e.g. Van Gogh)

Changes from version 1.27 to 1.30
The time range of the Swiss Ephemeris has been extended by numerical integration. The Swiss Ephemeris now
covers the period 2 Jan 5401 BC to 31 Dec 5399 AD. To use the extended time range, the appropriate
ephemeris files must be downloaded or ordered on CDROM.
In the JPL mode and the Moshier mode the time range remains unchanged at 3000 BC to 3000 AD.
 IMPORTANT
Chiron’s ephemeris is now restricted to the time range 650 AD – 4650 AD; for explanations, see swisseph.doc.
Outside this time range, Swiss Ephemeris returns an error code and a position value 0. You must handle this
situation in your application. There is a similar restriction with Pholus (as with some other asteroids).

Changes from version 1.26 to 1.27
The environment variable SE_EPHE_PATH is now always overriding the call to swe_set_ephe_path() if it is
set and contains a value.
Both the environment variable and the function argument can now contain a list of directory names where the
ephemeris files are looked for. Before this release, they could contain only a single directory name.

Changes from version 1.25 to 1.26
• The asteroid subdirectory ephe/asteroid has been split into directories ast0, ast1,... with 1000 asteroid files

per directory.
• source code is included with the distribution under the new licensing model
• the Placalc compatibility API (swepcalc.h) is now documented
• There is a new function to compute the equation of time swe_time_equ().
• Improvements of ephemerides:
• ATTENTION: Ephemeris of 16 Psyche has been wrong so far ! By a mysterious mistake it has been

identical to 3 Juno.
• Ephemerides of Ceres, Pallas, Vesta, Juno, Chiron and Pholus have been reintegrated, with more recent

orbital elements and parameters (e.g. asteroid masses) that are more appropriate to Bowells database of
minor planets elements. The differences are small, though.

• Note that the CHIRON ephemeris is should not be used before 700 A.D.
• Minor bug fix in computation of topocentric planet positions. Nutation has not been correcly considered in

observer’s position. This has lead to an error of 1 milliarcsec with the planets and 0.1” with the moon.
• We have inactivated the coordinate transformation from IERS to FK5, because there is still no generally

accepted algorithm. This results in a difference of a few milliarcsec from former releases.

Swiss Ephemeris 52
Changes from version 1.22 to 1.23
• The topocentric flag now also works with the fixed stars. (The effect of diurnal aberration is a few 0.1 arc

second.)
• Bug fix: The return position of swe_cotrans_sp() has been 0, when the input distance was 0.
• About 140 asteroids are on the CD.

Changes from version 1.21 to 1.22
• Asteroid ephemerides have been moved to the ephe\asteroid.
• The DLL has been modified in such a way that it can find them there.
• All asteroids with catalogue number below 90 are on the CD and a few additional ones.

Changes from version 1.20 to 1.21
Sample program and function declarations for Delphi 1.0 added.

Changes from version 1.11 to 1.20
New:
• A flag bit SEFLG_TOPOCTR allows to compute topocentric planet positions. Before calling swe_calc(), call

swe_set_topo.
• swe_house_pos for computation of the house position of a given planet. See description in

SWISSEPH.DOC, Chapter 3.1 ”Geocentric and topocentric positions”. A bug has been fixed that has
sometimes turned up, when the JPL ephemeris was closed. (An error in memory allocation and freeing.)

• Bug fix: swe_cotrans() did not work in former versions.

Changes from version 1.10 to 1.11
No bug fix, but two minor improvements:

• A change of the ephemeris bits in parameter iflag of function swe_calc() usually forces an implicit

swe_close() operation. Inside a loop, e.g. for drawing a graphical epehemeris, this can slow down a
program. Before this release, two calls with iflag = 0 and iflag = SEFLG_SWIEPH where considered different,
though in fact the same ephemeris is used. Now these two calls are considered identical, and swe_close()
is not performed implicitly.
For calls with the pseudo-planet-number ipl = SE_ECL_NUT, whose result does not depend on the chosen
ephemeris, the ephemeris bits are ignored completely and swe_close() is never performed implicitly.

• In former versions, calls of the Moshier ephemeris with speed and without speed flag have returned a very
small difference in position (0.01 arc second). The reason was that, for precise speed, swe_calc() had to do
an additional iteration in the light-time calculation. The two calls now return identical position data.

Changes from version 1.04 to 1.10
• A bug has been fixed that sometimes occurred in swe_calc() when the user changed iflag between calls,

e.g. the speed flag. The first call for a planet which had been previously computed for the same time, but a
different iflag, could return incorrect results, if Sun, Moon or Earth had been computed for a different time in
between these two calls.

• More asteroids have been added in this release.

Changes from Version 1.03 to 1.04
• A bug has been fixed that has sometimes lead to a floating point exception when the speed flag was not

specified and an unusual sequence of planets was called.
• Additional asteroid files have been included.

 Attention: Use these files only with the new DLL. Previous versions cannot deal with more than one additional
asteroid besides the main asteroids. This error did not appear so far, because only 433 Eros was on our CD-
ROM.

Changes from Version 1.02 to 1.03
• swe_fixstar() has a better implementation for the search of a specific star. If a number is given, the non-

comment lines in the file fixstars.cat are now counted from 1; they where counted from zero in earlier
releases.

Swiss Ephemeris 53
• swe_fixstar() now also computes heliocentric and barycentric fixed stars positions. Former versions Swiss

Ephemeris always returned geocentric positions, even if the heliocentric or the barycentric flag bit was set.
• The Galactic Center has been included in fixstars.cat.
• Two small bugs were fixed in the implementation of the barycentric Sun and planets. Under unusual

conditions, e.g. if the caller switched from JPL to Swiss Ephemeris or vice-versa, an error of an arc second
appeared with the barycentric sun and 0.001 arc sec with the barycentric planets. However, this did not touch
normal geocentric computations.

• Some VB declarations in swedecl.txt contained errors and have been fixed. The VB sample has been
extended to show fixed star and house calculation. This fix is only in 1.03 releases from 29-oct-97 or later,
not in the two 1.03 CDROMs we burned on 28-oct-97.

Changes from Version 1.01 to 1.02

• The function swe_houses() has been changed.
• A new function swe_houses_armc() has been added which can be used when a sidereal time (armc) is

given but no actual date is known, e.g. for Composite charts.
• The body numbers of the hypothetical bodies have been changed.
• The development environment for the DLL and the sample programs have been changed from Watcom 10.5

to Microsoft Visual C++ (5.0 and 1.5). This was necessary because the Watcom compiler created LIB files
which were not compatible with Microsoft C. The LIB files created by Visual C however are compatible with
Watcom.

Changes from Version 1.00 to 1.01

1. Sidereal time
The computation of the sidereal time is now much easier. The obliquity and nutation are now computed inside the
function. The structure of the function swe_sidtime() has been changed as follows:

/* sidereal time */
double swe_sidtime(double tjd_ut); /* Julian day number, UT */

The old functions swe_sidtime0() has been kept for backward compatibility.

2. Houses
The calculation of houses has been simplified as well. Moreover, the Vertex has been added.
The version 1.01 structure of swe_houses() is:

int swe_houses(
 double tjd_ut, /* julian day number, UT */
 double geolat, /* geographic latitude, in degrees */
 double geolon, /* geographic longitude, in degrees */
 char hsys, /* house method, one of the letters PKRCAV */
 double *asc, /* address for ascendant */
 double *mc, /* address for mc */
 double *armc, /* address for armc */
 double *vertex, /* address for vertex */
double *cusps); /* address for 13 doubles: 1 empty + 12 houses */

Note also, that the indices of the cusps have changed:

cusp[0] = 0 (before: cusp[0] = house 1)
cusp[1] = house 1 (before: cusp[1] = house 2)
cusp[2] = house 2 (etc.)

etc.

3. Ecliptic obliquity and nutation
The new pseudo-body SE_ECL_NUT replaces the two separate pseudo-bodies SE_ECLIPTIC and
SE_NUTATION in the function swe_calc().

Appendix A

What is missing ?

There are some important limits in regard to what you can expect from an ephemeris module. We do not tell you:

Swiss Ephemeris 54
how to draw a chart

• which glyphs to use
• when a planet is stat ionary (it depends on you how slow you want it to be)
• how to compute universal time from local time, i.e. what timezone a place is located in
• how to compute progressions, solar returns, composit charts, transit times and a lot else
• what the di f ferent calendars (Julian, Gregorian, ..) mean and when they applied.

Swiss Ephemeris 55

Index
Flag Body, Point

Default ephemeris flag Additional asteroids
Ephemeris flags Fictitious planets
Flag bits Find a name
Speed flag How to compute
 Special body SE_ECL_NUT
 Uranian planets

Position What is.. How to…
Astrometric Ayanamsha Change the tidal acceleration
Barycentric Dynamical Time compute sidereal composite house

cusps
Equatorial Ephemeris Time compute the composite ecliptic obliquity
Heliocentric Equation of time Draw the eclipse path
J2000 Julian day Get obliquity and nutation
Position and Speed Universal Time Get the umbra/penumbra limits
Radians/degrees Vertex/Anivertex Search for a star
Sidereal Switch the coordinate systems
Topocentric Switch true/mean equinox of date
True geometrical position
True/apparent
x, y, z

Errors Variable
Asteroids Armc
Avoiding Koch houses Ascmc[..]
Ephemeris path length Atpress
Errors and return values Attemp
Fatal error Ayan_t0
House cusps beyond the polar circle Cusps[..]
Koch houses limitations Eps
Overriding environment variables Gregflag
Speeds of the fixed stars Hsys
 Iflag
 Ipl
 Method
 Rsmi
 Sid_mode
 Star

Function Description
Swe_azalt Computes the horizontal coordinates (azimuth and altitude)
Swe_azalt_rev computes either ecliptical or equatorial coordinates from azimuth and

true altitude
swe_calc computes the positions of planets, asteroids, lunar nodes and

apogees
swe_calc_ut Modified version of swe_calc
swe_close releases most resources used by the Swiss Ephemeris
swe_cotrans Coordinate transformation, from ecliptic to equator or vice-versa
swe_cotrans_sp Coordinate transformation of position and speed, from ecliptic to

equator or vice-versa
swe_date_conversion computes a Julian day from year, month, day, time and checks

whether a date is legal

Swiss Ephemeris 56
swe_degnorm normalization of any degree number to the range 0 ... 360
swe_deltat Computes the difference between Universal Time (UT, GMT) and

Ephemeris time
swe_fixstar computes fixed stars
swe_fixstar_ut Modified version of swe_fixstar
swe_get_ayanamsa Computes the ayanamsha
swe_get_ayanamsa_ut Modified version of swe_get_ayanamsa
swe_get_planet_name Finds a planetary or asteroid name by given number
swe_get_tid_acc Gets the tidal acceleration
swe_house_pos compute the house position of a given body for a given ARMC
swe_houses Calculates houses for a given date and geographic position
swe_houses_armc computes houses from ARMC (e.g. with the composite horoscope

which has no date)
swe_houses_ex the same as swe_houses(). Has a parameter, which can be used, if

sidereal house positions are wanted
swe_julday Conversion from day, month, year, time to Julian date
swe_lun_eclipse_how Computes the attributes of a lunar eclipse at a given time
swe_lun_eclipse_when Finds the next lunar eclipse
swe_nod_aps Computes planetary nodes and apsides: perihelia, aphelia, second

focal points of the orbital ellipses
swe_nod_aps_ut Modified version of swe_nod_aps
swe_pheno Function computes phase, phase angle, elongation, apparent

diameter, apparent magnitude
swe_pheno_ut Modified version of swe_pheno
swe_refrac The true/apparent altitude convertion
swe_revjul Conversion from Julian date to day, month, year, time
swe_rise_trans Computes the times of rising, setting and meridian transits
swe_set_ephe_path Set application’s own ephemeris path
swe_set_jpl_file Sets JPL ephemeris directory path
swe_set_sid_mode Specifies the sidereal modes
swe_set_tid_acc Sets tidal acceleration used in swe_deltat()
swe_set_topo Sets what geographic position is to be used before topocentric

planet positions for a certain birth place can be computed
swe_sidtime returns sidereal time on Julian day
swe_sidtime0 returns sidereal time on Julian day, obliquity and nutation

swe_sol_eclipse_how Calculates the solar eclipse attributes for a given geographic

position and time
swe_sol_eclipse_when_glob finds the next solar eclipse globally
swe_sol_eclipse_when_loc finds the next solar eclipse for a given geographic position
swe_sol_eclipse_where finds out the geographic position where an eclipse is

central or maximal
swe_time_equ returns the difference between local apparent and local mean time

PlaCalc function Description
swe_csnorm Normalize argument into interval [0..DEG360]
swe_cs2degstr Centiseconds -> degrees string
swe_cs2lonlatstr Centiseconds -> longitude or latitude string
swe_cs2timestr Centiseconds -> time string
swe_csroundsec Round second, but at 29.5959 always down
swe_d2l Double to long with rounding, no overflow check
swe_day_of_week Day of week Monday = 0, ... Sunday = 6
swe_difcs2n Distance in centisecs p1 – p2 normalized to [-180..180]
swe_difcsn Distance in centisecs p1 – p2 normalized to [0..360]
swe_difdeg2n Distance in degrees
swe_difdegn Distance in degrees

End of SWEPHPRG.DOC

